work for Managing the Use of Approximation Models in Optimization, Tech. Rep. 97-50,

Institute for Computer Applications in Science and Engineering, Hampton, VA, October

1997.

[5] E. L. Allgower and K. Georg, Numerical path following, in Handbook of Numerical

Analysis, P. G. Ciarlet and J. L. Lions, eds., vol. 5, North“Holland, Amsterdam, 1997,

pp. 3“207.

[6] Anonymous, A new algorithm for optimization, Math. Programming, 3 (1972), pp. 124“

128.

[7] L. Armijo, Minimization of functions having Lipschitz-continuous ¬rst partial derivatives,

Paci¬c J. Math., 16 (1966), pp. 1“3.

[8] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary Differential Equa-

tions and Differential-Algebraic Equations, SIAM, Philadelphia, 1998.

[9] K. E. Atkinson, Iterative variants of the Nystr¨ m method for the numerical solution of

o

integral equations, Numer. Math., 22 (1973), pp. 17“31.

[10] B. M. Averick and J. J. Mor´ , User Guide for the MINPACK-2 Test Problem Collection,

e

Tech. Rep. ANL/MCS-TM-157, Math. and Comp. Science Div. Report, Argonne National

Laboratory, Argone, IL, October 1991.

[11] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, 1994.

[12] S. Banach, Sur les op´ rations dans les ensembles abstraits et leur applications aux

e

equations int´ grales, Fund. Math., 3 (1922), pp. 133“181.

´ e

[13] H. T. Banks and H. T. Tran, Mathematical and Experimental Modeling of Physical

Processes, unpublished notes for MA 573-4, 1997, Department of Mathematics, North

Carolina State University, Raleigh, NC.

[14] M. S. Barlett, An inverse matrix adjustment arising in discriminant analysis, Ann. Math.

Stat., 22 (1951), pp. 107“111.

161

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

162 BIBLIOGRAPHY

[15] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,

R. Pozo, C. Romine, and H. van der Vorst, Templates for the Solution of Linear

Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[16] K. J. Bathe and A. P. Cimento, Some practical procedures for the solution of nonlinear

¬nite element equations, Comput. Methods. Appl. Mech. Engrg., 22 (1980), pp. 59“85.

[17] A. Ben-Israel, A Newton-Raphson method for the solution of systems of equations, J.

Math. Anal. Appl., 15 (1966), pp. 243“252.

[18] D. P. Bertsekas, On the Goldstein-Levitin-Polyak gradient projection method, IEEE

Trans. Automat. Control, 21 (1976), pp. 174“184.

, Projected Newton methods for optimization problems with simple constraints,

[19]

SIAM J. Control Optim., 20 (1982), pp. 221“246.

[20] J. T. Betts, An improved penalty function method for solving constrained parameter

optimization problems, J. Optim. Theory Appl., 16 (1975), pp. 1“24.

, Solving the nonlinear least square problem: Application of a general method, J.

[21]

Optim. Theory Appl., 18 (1976), pp. 469“483.

[22] J. T. Betts, M. J. Carter, and W. P. Huffman, Software for Nonlinear Optimization,

Tech. Rep. MEA-LR-083 R1, Mathematics and Engineering Analysis Library Report,

Boeing Information and Support Services, Seattle, WA, June 6, 1997.

[23] J. T. Betts and P. D. Frank, A sparse nonlinear optimization algorithm, J. Optim. Theory

Appl., 82 (1994), pp. 519“541.

[24] P. T. Boggs, The convergence of the Ben-Israel iteration for nonlinear least squares

problems, Math. Comp., 30 (1976), pp. 512“522.

[25] P. T. Boggs and J. E. Dennis, A stability analysis for perturbed nonlinear iterative

methods, Math. Comp., 30 (1976), pp. 1“17.

[26] I. Bongatz, A. R. Conn, and P. L. Toint, CUTE: Constrained and unconstrained testing

environment, ACM Trans. Math. Software, 21 (1995), pp. 123“160.

[27] A. J. Booker, DOE for Computer Output, Tech. Rep. BCSTECH-94-052, Boeing Com-

puter Services, Seattle, WA, 1994.

[28] A. J. Booker, J. E. Dennis, P. D. Frank, D. B. Sera¬ni, V. Torczon, and M. W.

Trosset, A rigorous framework for optimization of expensive function by surrogates,

Structural Optimization, 17 (1999), pp. 1“13.

[29] D. M. Bortz and C. T. Kelley, The simplex gradient and noisy optimization problems,

in Computational Methods in Optimal Design and Control, J.T. Borggaard, J. Burns,

E. Cliff, S. Schrenk, eds., Birkhauser, Boston, 1998, pp. 77“90.

[30] A. Bouaricha, Tensor methods for large, sparse, unconstrained optimization, SIAM J.

Optim., 7 (1997), pp. 732“756.

¨

[31] H. Brakhage, Uber die numerische Behandlung von Integralgleichungen nach der

Quadraturformelmethode, Numer. Math., 2 (1960), pp. 183“196.

[32] K. E. Brenan, S. L. Campbell, and L. R. Petzold, The Numerical Solution of Initial

Value Problems in Differential-Algebraic Equations, SIAM, Philadelphia, 1996.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

BIBLIOGRAPHY 163

[33] P. N. Brown and Y. Saad, Convergence theory of nonlinear Newton“Krylov algorithms,

SIAM J. Optim., 4 (1994), pp. 297“330.

[34] C. G. Broyden, A class of methods for solving nonlinear simultaneous equations, Math.

Comp., 19 (1965), pp. 577“593.

, Quasi-Newton methods and their application to function minimization, Math.

[35]

Comp., 21 (1967), pp. 368“381.

, A new double-rank minimization algorithm, AMS Notices, 16 (1969), p. 670.

[36]

[37] C. G. Broyden, J. E. Dennis, and J. J. Mor´ , On the local and superlinear convergence

e

of quasi-Newton methods, J. Inst. Math. Appl., 12 (1973), pp. 223“246.

[38] R. H. Byrd, T. Derby, E. Eskow, K. P. B. Oldenkamp, and R. B. Schnabel, A new

stochastic/perturbation method for large-scale global optimization and its application to

water cluster problems, in Large Scale Optimization: State of the Art, W. W. Hager, D. W.

Hearn, and P. Pardalos, eds., Kluwer Academic Publishers B.V., Boston, 1994, pp. 68“81.

[39] R. H. Byrd, C. L. Dert, A. H. G. R. Kan, and R. B. Schnabel, Concurrent stochastic

methods for global optimization, Math. Programminng., 46 (1990), pp. 1“30.

[40] R. H. Byrd, E. Eskow, and R. B. Schnabel, A New Large-Scale Global Optimiza-

tion Method and Its Application to Lennard-Jones Problems, Tech. Rep. CU-CS-630-92,

University of Colorado at Boulder, November 1992.

[41] R. H. Byrd, H. F. Khalfan, and R. B. Schnabel, Analysis of a symmetric rank-one

trust region method, SIAM J. Optim., 6 (1996), pp. 1025“1039.

[42] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, A limited memory algorithm for bound

constrained optimization, SIAM J. Sci. Comput., 16 (1995), pp. 1190“1208.

[43] R. H. Byrd and J. Nocedal, A tool for the analysis of quasi-Newton methods with

application to unconstrained minimization, SIAM J. Numer. Anal., 26 (1989), pp. 727“

739.

[44] R. H. Byrd, J. Nocedal, and R. B. Schnabel, Representation of quasi-Newton matrices

and their use in limited memory methods, Math. Programming, 63 (1994), pp. 129“156.

[45] R. H. Byrd, J. Nocedal, and Y. Yuan, Global convergence of a class of quasi-Newton

methods on convex problems, SIAM J. Numer. Anal., 24 (1987), pp. 1171“1190.

[46] R. H. Byrd, R. B. Schnabel, and G. A. Schultz, Parallel quasi-Newton methods for

unconstrained optimization, Math. Programming, 42 (1988), pp. 273“306.

[47] P. H. Calamai and J. Mor´ , Projected gradient methods for linearly constrained prob-

e

lems, Math. Programming, 39 (1987), pp. 93“116.

[48] S. L. Campbell, C. T. Kelley, and K. D. Yeomans, Consistent initial conditions for

unstructured higher index DAEs: A computational study, in Proc. Conference on Compu-

tational Engineering in Systems Applications (CESA™96), Lille, France, 1996, pp. 416“

421.

[49] S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations,

Dover Press, New York, 1991.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

164 BIBLIOGRAPHY

[50] S. L. Campbell and K. D. Yeomans, Behavior of the nonunique terms in general DAE

integrators, Appl. Numer. Math., (1998), to appear.

[51] R. G. Carter, On the global convergence of trust region algorithms using inexact gradient

information, SIAM J. Numer. Anal., 28 (1991), pp. 251“265.

[52] A. Cauchy, Methode generale pour la resolution des systemes d™equations simultanees,

Comp. Rend. Acad. Sci. Paris, (1847), pp. 536“538.

[53] T. D. Choi. Private Communication, 1998.

, Bound Constrained Optimization, PhD thesis, North Carolina State University,

[54]

Raleigh, North Carolina, 1999.

[55] T. D. Choi, O. J. Eslinger, C. T. Kelley, J. W. David, and M. Etheridge, Optimization

of automotive valve train components with implict ¬ltering, Optim. Engrg., 1 (2000),

pp. 9“28.

[56] T. D. Choi and C. T. Kelley, Superlinear convergence and implicit ¬ltering, SIAM J.

Optim., 10 (2000), pp. 1149“1162.

[57] T. F. Coleman and Y. Li, On the convergence of interior-re¬‚ective Newton methods for

nonlinear minimization subject to bounds, Math. Programming, 67 (1994), pp. 189“224.

, An interior trust region approach for nonlinear minimization subject to bounds,

[58]

SIAM J. Optim., 6 (1996), pp. 418“445.

[59] T. F. Coleman and J. J. Mor´ , Estimation of sparse Jacobian matrices and graph

e

coloring problems, SIAM J. Numer. Anal., 20 (1983), pp. 187“209.

[60] P. Concus, G. H. Golub, and D. P. O™Leary, A generalized conjugate gradient method

for the numerical solution of elliptic partial differential equations, in Sparse Matrix Com-

putations, J. R. Bunch and D. J. Rose, eds., Academic Press, NewYork, 1976, pp. 309“332.

[61] A. R. Conn, , K. Scheinberg, and P. L. Toint, On the convergence of derivative-free

methods for unconstrained optimization, in Approximation Theory and Optimization:

Tributes to M. J. D. Powell, A. Iserles and M. Buhmann, eds., Cambridge University

Press, 1997, pp. 83“108.

, Recent progress in unconstrained optimization without derivatives, Math. Pro-

[62]

gramming Ser. B, 79 (1997), pp. 397“414.

[63] A. R. Conn, N. I. M. Gould, and P. L. Toint, Global convergence of a class of trust

region algorithms for optimization problems with simple bounds, SIAM J. Numer. Anal.,

25 (1988), pp. 433“460.

, Testing a class of methods for solving minimization problems with simple bounds

[64]

on the variables, Math. Comp., 50 (1988), pp. 399“430.

, Convergence of quasi-Newton matrices generated by the symmetric rank one up-

[65]

date, Math. Programming Ser. A, 50 (1991), pp. 177“195.

, LANCELOT: A Fortran Package for Large-Scale Nonlinear Optimization (Release

[66]

A), Springer Series in Computational Mathematics, Springer-Verlag, Heidelberg, Berlin,

New York, 1992.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

BIBLIOGRAPHY 165

[67] A. R. Curtis, M. J. D. Powell, and J. K. Reid, On the estimation of sparse Jacobian

matrices, J. Inst. Math. Appl., 13 (1974), pp. 117“119.

[68] J. W. Daniel, The conjugate gradient method for linear and nonlinear operator equations,

SIAM J. Numer. Anal., 4 (1967), pp. 10“26.

[69] J. W. David, C. Y. Cheng, T. D. Choi, C. T. Kelley, and J. Gablonsky, Optimal Design

of High Speed Mechanical Systems, Tech. Rep. CRSC-TR97-18, Center for Research in

Scienti¬c Computation, North Carolina State University, Raleigh, July 1997; Math.

Modelling Sci. Comput., to appear.

[70] J. W. David, C. T. Kelley, and C. Y. Cheng, Use of an Implicit Filtering Algorithm

for Mechanical System Parameter Identi¬cation. SAE Paper 960358, 1996 SAE Interna-

tional Congress and Exposition Conference Proceedings, Modeling of CI and SI Engines,

Society of Automotive Engineers, pp. 189“194.

[71] W. C. Davidon, Variable Metric Methods for Minimization, Tech. Rep. ANL-5990, Ar-

gonne National Laboratory, Argone, IL, 1959.

, Variable metric method for minimization, SIAM J. Optim., 1 (1991), pp. 1“17.

[72]

[73] T. J. Dekker, Finding a zero by means of successive linear interpolation, in Constructive

Aspects of the Fundamental Theorem of Algebra, B. Dejon and P. Henrici, eds., Wiley-

Interscience, New York, 1969, pp. 37“48.

[74] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J.

Numer. Anal., 19 (1982), pp. 400“408.

[75] R. Dembo and T. Steihaug, Truncated Newton algorithms for large-scale optimization,

Math. Programming, 26 (1983), pp. 190“212.

[76] J. E. Dennis, Nonlinear least squares and equations, in The State of the Art in Numerical

Analysis, D. Jacobs, ed., Academic Press, London, 1977, pp. 269“312.

[77] J. E. Dennis, D. M. Gay, and R. E.Welsch, An adaptive nonlinear least-squares algo-

rithm, ACM Trans. Math. Software, 7 (1981), pp. 348“368.

, Algorithm 573: NL2SOL “ An adaptive nonlinear least-squares algorithm, ACM

[78]

Trans. Math. Software, 7 (1981), pp. 369“383.

[79] J. E. Dennis, M. Heinkenschloss, and L. N. Vicente, Trust-region interior-point SQP

algorithms for a class of nonlinear programming problems, SIAM J. Control Optim., 36

(1998), pp. 1750“1794.

[80] J. E. Dennis and H. H. W. Mei, Two unconstrained optimization algorithms which use

function and gradient values, J. Optim. Theory Appl., 28 (1979), pp. 453“482.

[81] J. E. Dennis and J. J. Mor´ , A characterization of superlinear convergence and its

e

application to quasi-Newton methods, Math. Comp., 28 (1974), pp. 549“560.

, Quasi-Newton methods, methods, motivation and theory, SIAM Rev., 19 (1977),

[82]

pp. 46“89.

[83] J. E. Dennis and R. B. Schnabel, Least change secant updates for quasi-Newton meth-

ods, SIAM Rev., 21 (1979), pp. 443“459.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

166 BIBLIOGRAPHY

, Numerical Methods for Unconstrained Optimization and Nonlinear Equations,

[84]

SIAM, Philadelphia, 1996.

[85] J. E. Dennis and V. Torczon, Direct search methods on parallel machines, SIAM J.

Optim., 1 (1991), pp. 448“474.

[86] J. E. Dennis and L. N. Vicente, Trust-region interior-point algorithms for minimization

problems with simple bounds, inApplied Mathematics and Parallel Computing, H. Fischer,

B. Riedmiller, and S. Schaf¬‚er, eds., Hidelberg, 1997, Springer, pp. 97“109.

[87] J. E. Dennis and H. F. Walker, Convergence theorems for least-change secant update

methods, SIAM J. Numer. Anal., 18 (1981), pp. 949“987.

, Inaccuracy in quasi-Newton methods: Local improvement theorems, in Mathe-

[88]

matical Programming Study 22: Mathematical Programming at Oberwolfach II, North“

Holland, Amsterdam, 1984, pp. 70“85.

[89] J. E. Dennis and D. J. Woods, Optimization on microcomputers: The Nelder-Mead

simplex algorithm, in New Computing Environments: Microcomputers in Large-Scale

Scienti¬c Computing, A. Wouk, ed., SIAM, Philadelphia, 1987, pp. 116“122.

[90] P. Deu¬‚hard and V. Apostolescu, A Study of the Gauss-Newton Algorithm for the

Solution of Nonlinear Least Squares Problems, Tech. Rep. 51, Univ. Heidelberg, 1980,

preprint.

[91] P. Deu¬‚hard, R. W. Freund, and A. Walter, Fast secant methods for the iterative

solution of large nonsymmetric linear systems, Impact Comput. Sci. Engrg., 2 (1990),

pp. 244“276.

[92] P. Deu¬‚hard and G. Heindl, Af¬ne invariant convergence theorems for Newton™s

method and extensions to related methods, SIAM J. Numer. Anal., 16 (1979), pp. 1“10.

[93] W. J. Duncan, Some devices for the solution of large sets of simultaneous linear equations

(with an appendix on the reciprocation of partitioned matrices), The London, Edinburgh,

and Dublin Philosophical Magazine and Journal of Science, Seventh Series, 35 (1944),

pp. 660“670.

[94] J. C. Dunn, Global and asymptotic convergence rate estimates for a class of projected

gradient processes, SIAM J. Control Optim., 19 (1981), pp. 368“400.

, On the convergence of projected gradient processes to singular critical points, J.

[95]

Optim. Theory Appl., 55 (1987), pp. 203“215.

, A projected Newton method for minimization problems with nonlinear inequality

[96]

constraints, Numer. Math., 53 (1988), pp. 377“409.

[97] J. C. Dunn and E. W. Sachs, The effect of perturbations on the convergence rates of

optimization algorithms, Appl. Math. Optim., 10 (1983), pp. 143“147.

[98] J. C. Dunn and T. Tian, Variants of the Kuhn“Tucker suf¬cient conditions in cones of

nonnegative functions, SIAM J. Control Optim., 30 (1992), pp. 1361“1384.

[99] S. C. Eisenstat and H. F. Walker, Choosing the forcing terms in an inexact Newton

method, SIAM J. Sci. Comput., 17 (1996), pp. 16“32.

[100] E. Eskow and R. B. Schnabel, Algorithm 695: Software for a new modi¬ed Cholesky

factorization, ACM Trans. Math. Software, 17 (1991), pp. 306“312.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.

Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

BIBLIOGRAPHY 167

[101] A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained

Minimization Techniques, SIAM, Philadelphia, 1990.

[102] R. Fletcher, Generalized inverse methods for the best least squares solution of systems

of nonlinear equations, Comput. J., 10 (1968), pp. 392“399.

, A new approach to variable metric methods, Comput. J., 13 (1970), pp. 317“322.

[103]

, Practical Methods of Optimization, John Wiley and Sons, New York, 1987.

[104]

[105] R. Fletcher and M. J. D. Powell, A rapidly convergent descent method for minimiza-

tion, Comput. J., 6 (1963), pp. 163“168.

[106] R. Fletcher and C. M. Reeves, Function minimization by conjugate gradients, Comput.

J., 7 (1964), pp. 149“154.

[107] S. J. Fortune, D. M. Gay, B. W. Kernighan, O. Landron, R. A. Valenzuela, and

M. H. Wright, WISE design of indoor wireless systems, IEEE Computational Science

and Engineering, Spring (1995), pp. 58“68.

[108] J. Gablonsky, An Implemention of the Direct Algorithm, Tech. Rep. CRSC-TR98-29,

Center for Research in Scienti¬c Computation, North Carolina State University, Raleigh,

August 1998.

[109] D. M. Gay, Computing optimal locally constrained steps, SIAM J. Sci. Statist. Comput.,

2 (1981), pp. 186“197.

[110] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations,

Prentice“Hall, Englewood Cliffs, NJ, 1971.

[111] R. R. Gerber and F. T. Luk, A generalized Broyden™s method for solving simultaneous

linear equations, SIAM J. Numer. Anal., 18 (1981), pp. 882“890.

[112] J. C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient