<< . .

. 57
( : 59)

. . >>

on G, where a function u : G ’ R is called essentially bounded if the

sup |u(x)|
u := inf
G0 ‚G: |G0 |d =0 x∈G\G0

is ¬nite. For continuous functions, this norm coincides with the usual
maximum norm:

= max |u(x)| , u ∈ C(G) .
u ∞,G

For 1 ¤ q ¤ p ¤ ∞, we have Lp (G) ‚ Lq (G), and the embedding is
The space Wp (G), l ∈ N, p ∈ [1, ∞], consists of all l-times weakly di¬er-

entiable functions from Lp (G) with derivatives in Lp (G). In the special case
p = 2, we also write H l (G) := W2 (G). In analogy to the case of continuous

functions, the convention H 0 (G) := L2 (G) is used. The norm in Wp (G) is
406 A. Appendices

de¬ned as follows:

|‚ u| dx p ∈ [1, ∞) ,
± p
u := ,

max |‚ ± u|∞,G .
u :=

In H l (G) a scalar product can be de¬ned by

u, v ∈ H l (G) .
‚ ± u‚ ± v dx ,
u, v :=

· l ∈ N:
The norm induced by this scalar product is denoted by l,G ,

u := u, u .
l,G l,G

For l ∈ N, the symbol | · |l,G stands for the corresponding H l (G)-seminorm:

|u|l,G := |‚ ± u|2 dx .

The space H0 (G) is de¬ned as the closure (or completion) of C0 (G) in the
norm · 1 of H 1 (G).

Convention: Usually, in the case G = „¦ the speci¬cation of the domain
in the above norms and scalar products is omitted.
In the study of partial di¬erential equations, it is often desirable to speak
of boundary values of functions de¬ned on the domain G. In this respect,
the Lebesgue spaces of functions that are square integrable at the bound-
ary of G are important. To introduce these spaces, some preparations are
In what follows, a point x ∈ Rd is written in the form x = xd with
x = (x1 , . . . , xd’1 )T ∈ Rd’1 .
A domain G ‚ Rd is said to be located at one side of ‚G if for any x ∈ ‚G
there exist an open neighbourhood Ux ‚ Rd and an orthogonal mapping
Qx in Rd such that the point x is mapped to a point x = (ˆ1 , . . . , xd )T ,
ˆ x ˆ
and so Ux is mapped onto a neighbourhood Ux ‚ R of x, where in the
neighbourhood Ux the following properties hold:

(1) The image of Ux © ‚G is the graph of some function Ψx : Yx ‚
Rd’1 ’ R; that is, xd = Ψx (ˆ1 , . . . , xd’1 ) = Ψx (ˆ ) for x ∈ Yx .
ˆ x ˆ x ˆ
(2) The image of Ux © G is “above this graph” (i.e., the points in Ux © G
correspond to xd > 0).
A.5. Function Spaces 407

(3) The image of Ux © (Rd \ G) is “below this graph” (i.e., the points in
Ux © (Rd \ G) correspond to xd < 0).

A domain G that is located at one side of ‚G is called a C l domain, l ∈ N,
respectively a Lipschitz(ian) domain, if all Ψx are l-times continuously
di¬erentiable, respectively Lipschitz continuous, in Yx .
Bounded Lipschitz domains are also called strongly Lipschitz.
For bounded domains located at one side of ‚G, it is well known (cf.,
e.g. [37]) that from the whole set of neighbourhoods {Ux }x∈‚G there can be
selected a family {Ui }n of ¬nitely many neighbourhoods covering ‚G, i.e.,
n ∈ N and ‚G ‚ i=1 Ui . Furthermore, for any such family there exists a

system of functions {•i }n with the properties •i ∈ C0 (Ui ), •i (x) ∈ [0, 1]
for all x ∈ Ui and i=1 •i (x) = 1 for all x ∈ ‚G. Such a system is called
a partition of unity.
If the domain G is at least Lipschitzian, then Lebesgue™s integral over
the boundary of G is de¬ned by means of those partitions of unity. In cor-
respondence to the de¬nition of a Lipschitz domain, Qi , Ψi , and Yi denote
the orthogonal mapping on Ui , the function describing the corresponding
local boundary, and the preimage of Qi (Ui © ‚G) with respect to Ψi .
A function v : ‚G ’ R is called Lebesgue integrable over ‚G if the
composite functions x ’ v QT Ψ xx ) ˆ belong to L1 (Yi ). The integral
i (ˆ
is de¬ned as follows:
v(s) ds := v(s)•i (s) ds
‚G ‚G
v QT Ψ xx )
ˆ •i QT Ψ xx )
:= i i
i (ˆ i (ˆ

— |det(‚j Ψi (ˆ )‚k Ψi (ˆ ))d’1 | dˆ .
x x j,k=1 x

A function v : ‚G ’ R belongs to L2 (‚G) i¬ both v and v 2 are Lebesgue
integrable over ‚G.
In the investigation of time-dependent partial di¬erential equations, lin-
ear spaces whose elements are functions of the time variable t ∈ [0, T ],
T > 0, with values in a normed space X are of interest.
A function v : [0, T ] ’ X is called continuous on [0, T ] if for all t ∈ [0, T ]
the convergence v(t + k) ’ v(t) X ’ 0 as k ’ 0 holds.
The space C([0, T ], X) = C 0 ([0, T ], X) consists of all continuous
functions v : [0, T ] ’ X such that

sup v(t) X
t∈(0,T )

The space C l ([0, T ], X), l ∈ N, consists of all continuous functions v :
[0, T ] ’ X that have continuous derivatives up to order l on [0, T ] with the
408 A. Appendices

v (i) (t)
sup .
i=0 t∈(0,T )

The space Lp ((0, T ), X) with 1 ¤ p ¤ ∞ consists of all functions on (0, T )—
„¦ for which
v(t, ·) ∈ X for any t ∈ (0, T ) , F ∈ Lp (0, T ) with F (t) := v(t, ·) .

v := F .
Lp ((0,T ),X) Lp (0,T )
References: Textbooks and

[1] R.A. Adams. Sobolev Spaces. Academic Press, New York, 1975.
[2] M. Ainsworth and J.T. Oden. A Posteriori Error Estimation in Finite
Element Analysis. Wiley, New York, 2000.
[3] O. Axelsson and V.A. Barker. Finite Element Solution of Boundary
Value Problems. Theory and Computation. Academic Press, Orlando, 1984.
[4] R.E. Bank. PLTMG, a Software Package for Solving Elliptic Partial Dif-
ferential Equations: Users Guide 7.0. SIAM, Philadelphia, 1994. Frontiers
in Applied Mathematics, Vol. 15.
[5] A. Berman and R.J. Plemmons. Nonnegative Matrices in the Mathemat-
ical Sciences. Academic Press, New York, 1979.
[6] D. Braess. Finite Elements. Theory, Fast Solvers, and Applications in
Solid Mechanics. Cambridge University Press, Cambridge, 2001 (2nd ed.).
[7] S.C. Brenner and L.R. Scott. The Mathematical Theory of Finite El-
ement Methods. Springer, New York“Berlin“Heidelberg, 2002 (2nd ed.).
Texts in Applied Mathematics, Vol. 15.
[8] V.I. Burenkov. Sobolev Spaces on Domains. Teubner, Stuttgart, 1998.
[9] P.G. Ciarlet. Basic Error Estimates for Elliptic Problems. In: P.G. Ciarlet
and J.L. Lions, editors, Handbook of Numerical Analysis, Volume II: Finite
Element Methods (Part 1). North-Holland, Amsterdam, 1991.
[10] A.J. Chorin and J.E. Marsden. A Mathematical Introduction to Fluid
Mechanics. Springer, Berlin“Heidelberg“New York, 1993.
[11] R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical
Methods for Science and Technology. Volume 4: Integral Equations and
Numerical Methods. Springer, Berlin“Heidelberg“New York, 1990.
410 References: Textbooks and Monographs

[12] L.C. Evans. Partial Di¬erential Equations. American Mathematical Soci-
ety, Providence, 1998.
[13] D. Gilbarg and N.S. Trudinger. Elliptic Partial Di¬erential Equations
of Second Order. Springer, Berlin“Heidelberg“New York, 1983 (2nd ed.).
[14] V. Girault and P.-A. Raviart. Finite Element Methods for Navier-
Stokes Equations. Springer, Berlin“Heidelberg“New York, 1986.
[15] W. Hackbusch. Elliptic Di¬erential Equations. Theory and Numerical
Treatment. Springer, Berlin“Heidelberg“New York, 1992.
[16] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations.
Springer, New York, 1994.
[17] W. Hackbusch. Multi-Grid Methods and Applications. Springer, Berlin“
Heidelberg“New York, 1985.
[18] L.A. Hageman and D.M. Young. Applied Iterative Methods. Academic
Press, New York“London“Toronto“Sydney“San Francisco, 1981.
[19] U. Hornung, ed.. Homogenization and Porous Media. Springer, New York,
[20] T. Ikeda. Maximum Principle in Finite Element Models for Convection“
Di¬usion Phenomena. North-Holland, Amsterdam“New York“Oxford, 1983.
[21] C. Johnson. Numerical Solution of Partial Di¬erential Equations by
the Finite Element Method. Cambridge University Press, Cambridge“New
York“New Rochelle“Melbourne“Sydney, 1987.
[22] C.T. Kelley. Iterative Methods for Linear and Nonlinear Equations.
SIAM, Philadelphia, 1995.
[23] P. Knupp and S. Steinberg. Fundamentals of Grid Generation. CRC
Press, Boca Raton, 1993.
[24] J.D. Logan. Transport Modeling in Hydrogeochemical Systems. Springer,
New York“Berlin“Heidelberg, 2001.
[25] J. Necas. Les M´thodes Directes en Th´orie des Equations Elliptiques.
e e
Masson/Academia, Paris/Prague, 1967.
[26] M. Renardy and R.C. Rogers. An Introduction to Partial Di¬erential
Equations. Springer, New York, 1993.
[27] H.-G. Roos, M. Stynes, and L. Tobiska. Numerical Methods for Sin-
gularly Perturbed Di¬erential Equations. Springer, Berlin“Heidelberg“New
York, 1996. Springer Series in Computational Mathematics, Vol. 24.
[28] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publ. Co.,
Boston, 1996.
[29] D.H. Sattinger. Topics in Stability and Bifurcation Theory. Springer,
Berlin“Heidelberg“New York, 1973.
[30] J. Stoer. Introduction to Numerical Analysis. Springer, Berlin“Heidelberg“
New York, 1996 (2nd ed.).
[31] G. Strang and G.J. Fix. An Analysis of the Finite Element Method.
Wellesley-Cambridge Press, Wellesley, 1997 (3rd ed.).
[32] J.C. Strikwerda. Finite Di¬erence Schemes and Partial Di¬erential
Equations. Wadsworth & Brooks/Cole, Paci¬c Grove, 1989.
References: Textbooks and Monographs 411

[33] J.F. Thompson, Z.U.A. Warsi, and C.W. Mastin. Numerical Grid
Generation: Foundations and Applications. North-Holland, Amsterdam,
[34] R.S. Varga. Matrix Iterative Analysis. Springer, Berlin“Heidelberg“New
York, 2000.
[35] R. Verfurth. A Review of A Posteriori Error Estimation and Adaptive
Mesh-Re¬nement Techniques. Wiley and Teubner, Chichester“New York“
Brisbane“Toronto“Singapore and Stuttgart“Leipzig, 1996.
[36] S. Whitaker. The Method of Volume Averaging. Kluwer Academic
Publishers, Dordrecht, 1998.
[37] J. Wloka. Partial Di¬erential Equations. Cambridge University Press,
New York, 1987.
[38] D.M. Young. Iterative Solution of Large Linear Systems. Academic Press,
New York, 1971.
[39] E. Zeidler. Nonlinear Functional Analysis and Its Applications. II/A:
Linear Monotone Operators. Springer, Berlin“Heidelberg“New York, 1990.
References: Journal Papers

[40] L. Angermann. Error estimates for the ¬nite-element solution of an elliptic
singularly perturbed problem. IMA J. Numer. Anal., 15:161“196, 1995.
[41] T. Apel and M. Dobrowolski. Anisotropic interpolation with applica-
tions to the ¬nite element method. Computing, 47:277“293, 1992.
[42] D.G. Aronson. The porous medium equation. In: A. Fasano and M. Prim-
icerio, editors, Nonlinear Di¬usion Problems. Lecture Notes in Mathematics
1224:1“46, 1986.
[43] M. Bause and P. Knabner. Uniform error analysis for Lagrange“Galerkin
approximations of convection-dominated problems. SIAM J. Numer. Anal.,
39(6):1954“1984, 2002.
[44] R. Becker and R. Rannacher. A feed-back approach to error control in
¬nite element methods: Basic analysis and examples. East-West J. Numer.
Math., 4(4):237“264, 1996.
[45] C. Bernardi, Y. Maday, and A.T. Patera. A new nonconforming ap-
proach to domain decomposition: the mortar element method. In: H. Brezis
and J.-L. Lions, editors, Nonlinear Partial Di¬erential Equations and Their
Applications. Longman, 1994.
[46] T.D. Blacker and R.J. Meyers. Seams and wedges in plastering: A
3-D hexahedral mesh generation algorithm. Engineering with Computers,
9:83“93, 1993.
[47] T.D. Blacker and M.B. Stephenson. Paving: A new approach to auto-
mated quadrilateral mesh generation. Internat. J. Numer. Methods Engrg.,
32:811“847, 1991.
[48] A. Bowyer. Computing Dirichlet tesselations. Computer J., 24(2):162“166,
References: Journal Papers 413

[49] A.N. Brooks and T.J.R. Hughes. Streamline-upwind/Petrov“Galerkin
formulations for convection dominated ¬‚ows with particular emphasis on
the incompressible Navier“Stokes equations. Comput. Meth. Appl. Mech.
Engrg., 32:199“259, 1982.
[50] J.C. Cavendish. Automatic triangulation of arbitrary planar domains for
the ¬nite element method. Internat. J. Numer. Methods Engrg., 8(4):679“
696, 1974.
[51] W.M. Chan and P.G. Buning. Surface grid generation methods for
overset grids. Comput. Fluids, 24(5):509“522, 1995.
[52] P. Clement. Approximation by ¬nite element functions using local
regularization. RAIRO Anal. Num´r., 9(R-2):77“84, 1975.
[53] P.C. Hammer and A.H. Stroud. Numerical integration over simplexes
and cones. Math. Tables Aids Comput., 10:130“137, 1956.
[54] T.J.R. Hughes, L.P. Franca, and G.M. Hulbert. A new ¬nite element
formulation for computational ¬‚uid dynamics: VIII. The Galerkin/least-
squares method for advective-di¬usive equations. Comput. Meth. Appl.
Mech. Engrg., 73(2):173“189, 1989.
[55] P. Jamet. Estimation of the interpolation error for quadrilateral ¬nite
elements which can degenerate into triangles. SIAM J. Numer. Anal.,
14:925“930, 1977.
[56] H. Jin and R. Tanner. Generation of unstructured tetrahedral meshes by
advancing front technique. Internat. J. Numer. Methods Engrg., 36:1805“
1823, 1993.
[57] P. Knabner and G. Summ. The invertibility of the isoparametric mapping
for pyramidal and prismatic ¬nite elements. Numer. Math., 88(4):661“681,
[58] M. Kr´ˇek. On the maximum angle condition for linear tetrahedral
ˇ ±z
elements. SIAM J. Numer. Anal., 29:513“520, 1992.
[59] C.L. Lawson. Software for C 1 surface interpolation. In: J.R. Rice, editor,
Mathematical Software III, 161“194. Academic Press, New York, 1977.
[60] P. Moller and P. Hansbo. On advancing front mesh generation in three
dimensions. Internat. J. Numer. Methods Engrg., 38:3551“3569, 1995.
[61] K.W. Morton, A. Priestley, and E. Suli. Stability of the Lagrange“
Galerkin method with non-exact integration. RAIRO Mod´l. Math. Anal.
Num´r., 22(4):625“653, 1988.
[62] J. Peraire, M. Vahdati, K. Morgan, and O.C. Zienkiewicz. Adaptive
remeshing for compressible ¬‚ow computations. J. Comput. Phys., 72:449“
466, 1987.
[63] S.I. Repin. A posteriori error estimation for approximate solutions of varia-
tional problems by duality theory. In: H.G. Bock et al., editors, Proceedings
of ENUMATH 97, 524“531. World Scienti¬c Publ., Singapore, 1998.
±guez. Some remarks on Zienkiewicz“Zhu estimator. Numer. Meth.
[64] R. Rodr´
PDE, 10(5):625“635, 1994.
[65] W. Ruge and K. Stueben. Algebraische Mehrgittermethoden. In: S.F. Mc-
Cormick, editor, Multigrid Methods, 73“130. SIAM, Philadelphia, 1987.
414 References: Journal Papers

[66] R. Schneiders and R. Bunten. Automatic generation of hexahedral ¬nite
element meshes. Computer Aided Geometric Design, 12:693“707, 1995.
[67] L.R. Scott and S. Zhang. Finite element interpolation of nonsmooth
functions satisfying boundary conditions. Math. Comp., 54(190):483“493,
[68] M.S. Shephard and M.K. Georges. Automatic three-dimensional mesh
generation by the ¬nite octree technique. Internat. J. Numer. Methods
Engrg., 32:709“749, 1991.
[69] G. Summ. Quantitative Interpolationsfehlerabsch¨tzungen f¨r Triangulierun-
a u
gen mit allgemeinen Tetraeder- und Hexaederelementen. Diplomarbeit,
Friedrich“Alexander“Universit¨t Erlangen“N¨rnberg, 1996.
a u
[70] Ch. Tapp. Anisotrope Gitter ” Generierung und Verfeinerung. Disserta-
tion, Friedrich“Alexander“Universit¨t Erlangen“N¨rnberg, 1999.
a u
[71] D.F. Watson. Computing the n-dimensional Delaunay tesselation with
application to Voronoi polytopes. Computer J., 24(2):167“172, 1981.
[72] M.A. Yerry and M.S. Shephard. Automatic three-dimensional mesh
generation by the modi¬ed-octree technique. Internat. J. Numer. Methods
Engrg., 20:1965“1990, 1984.
[73] J.Z. Zhu, O.C. Zienkiewicz, E. Hinton, and J. Wu. A new approach
to the development of automatic quadrilateral mesh generation. Internat.
J. Numer. Methods Engrg., 32:849“866, 1991.
[74] O.C. Zienkiewicz and J.Z. Zhu. The superconvergent patch recovery and
a posteriori error estimates. Parts I,II. Internat. J. Numer. Methods Engrg.,
33(7):1331“1364,1365“1382, 1992.

adjoint, 247 modi¬ed, 237
arti¬cial di¬usion method, 373
adsorption, 12
advancing front method, 179, 180 assembling, 62
element-based, 66, 77
node-based, 66
Arnoldi, 235
asymptotically optimal method, 199

<< . .

. 57
( : 59)

. . >>