<< . .

. 11
( : 11)



Essays in Honor of Gian-Carlo Rota, B. E. Sagan, R. P. Stanley, eds., Progress in Math., vol. 161,
Birkh¨user, Boston, 1998, 359“376. (p. 31)
a
[168] G. P. Steck, Evaluation of some Steck determinants with applications, Comm. Statist. 3 (1974),
121“138. (p. 31)
[169] J. R. Stembridge, Nonintersecting paths, pfa¬ans and plane partitions, Adv. in Math. 83 (1990),
96“131. (p. 23, 24, 24, 24, 24, 31)
[170] J. R. Stembridge, The enumeration of totally symmetric plane partitions, Adv. in Math. 111
(1995), 227“245. (p. 43)
[171] T. J. Stieltjes, Sur la r´duction en fraction continue d™une s´rie pr´c´dent suivant les puissances
e e ee
descendants d™une variable, Ann. Fac. Sci. Toulouse 3 (1889), H, 1“17; ’uvres, Vol. 2, 184“200.
(p. 48)
[172] T. J. Stieltjes, Sur quelques int´grales d´¬nies et leur d´veloppement en fractions continues,
e e e
Quart. J. Math. 24 (1890), 370“382. (p. 48)
[173] V. Strehl and H. S. Wilf, Five surprisingly simple complexities, J. Symbolic Comput. 20 (1995),
725“729. (p. 23)
[174] G. Szeg˝, Orthogonal Polynomials, American Mathematical Society Colloquium Publications
o
Vol. XXIII, New York, 1959. (p. 20)
[175] V. Tarasov and A. Varchenko, Geometry of q-hypergeometric functions as a bridge between Yan-
gians and quantum a¬ne algebras, Invent. Math. 128 (1997), 501“588. (p. 18, 49)
[176] V. Tarasov and A. Varchenko, Geometry of q-hypergeometric functions, quantum a¬ne algebras
and elliptic quantum groups, Ast´risque 246 (1997), 1“135. (p. 18, 29, 49)
e
[177] T. Terasoma, Determinants of q-hypergeometric functions and another proof of the Askey con-
jecture, Math. Zeitschrift 226 (1997), 499“512. (p. 51)
[178] H. W. Turnbull, The theory of determinants, matrices, and invariants, Blackie & Son, London
and Glasgow, 1929. (p. 2, 47)
[179] H. W. Turnbull, The general symbolic notation for the principal of duality, and its application
to determinants, Proc. London Math. Soc. (2) 22 (1923), 495“507. (p. 7, 56, 57)
[180] W. T. Tutte, On the Birkho¬“Lewis equation, Discrete Math. 92 (1991), 417“425. (p. 50)
[181] W. T. Tutte, The matrix of chromatic joins, J. Combin. Theory Ser. B 57 (1993), 269“288.
(p. 50)
[182] A. Varchenko, The Euler beta function, the Vandermonde determinant, Legendre™s equation, and
critical points of linear function on a con¬guration of hyperplanes, I, II, Math. USSR Izv. 35
(1990), 542“571; 36 (1991), 155“168. (p. 29, 49)
[183] A. Varchenko, Determinant formula for Selberg type integrals, Funct. Anal. Appl. 4 (1991), 65“66.
(p. 49)
ADVANCED DETERMINANT CALCULUS 67

[184] A. Varchenko, Bilinear form of real con¬guration of hyperplanes, Adv. in Math. 97 (1993), 110“
144. (p. 48, 49)
[185] A. Varchenko, Multidimensional hypergeometric functions and representation theory of Lie al-
gebras and quantum groups, Advanced Series in Math. Phys., vol. 21, World Scienti¬c, 1995.
(p. 49)
[186] X. Viennot, Une th´orie combinatoire des polynˆmes orthogonaux g´n´raux, UQAM, Montreal,
e o ee
Quebec, 1983. (p. 20, 20, 21, 21)
[187] H. Voigt, Sur l™apolarit´ des formes binaires, Nouv. Annales de Math. 4 (1901), 337“365; see
e
[120], p. 183. (p. 25)
[188] H. S. Wall, Analytic Theory of Continued Fractions, Van Nostrand, New York, 1948. (p. 20, 20,
21, 21)
[189] H. S. Wilf, A combinatorial determinant, preprint, math/9809120. (p. 48)
[190] H. S. Wilf and D. Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and “q”)
multisum/integral identities, Invent. Math. 108 (1992), 575“633. (p. 3, 15)
[191] J. A. Wilson, Orthogonal functions from Gram determinants, SIAM J. Math. Anal. 22 (1991),
1147“1155. (p. 32)
[192] R. A. Wilson, A diagonal form for the incidence matrices of t-subsets versus k-subsets, Europ.
J. Combin. 11 (1990), 609“615. (p. 51)
[193] D. Zagier, Realizability of a model in in¬nite statistics, Comm. Math. Phys. 147 (1992), 199“210.
(p. 48, 49)
[194] D. Zeilberger, A fast algorithm for proving terminating hypergeometric identities, Discrete Math.
80 (1990), 207“211. (p. 3, 14, 15)
[195] D. Zeilberger, A holonomic systems approach to special functions identities, J. Comput. Appl.
Math. 32 (1990), 321“368. (p. 3, 15)
[196] D. Zeilberger, The method of creative telescoping, J. Symbolic Comput. 11 (1991), 195“204. (p. 3,
14, 15)
[197] D. Zeilberger, Reverend Charles to the aid of Major Percy and Fields medalist Enrico, Amer.
Math. Monthly, 103 (1996), 501“502. (p. 12)
[198] D. Zeilberger, Proof of the alternating sign matrix conjecture, Electron. J. Combin. 3 (no. 2,
“The Foata Festschrift”) (1996), #R13, 84 pp. (p. 30, 52)
[199] D. Zeilberger, Proof of the re¬ned alternating sign matrix conjecture, New York J. Math. 2 (1996),
59“68. (p. 30, 52)
[200] D. Zeilberger, Dodgson™s determinant-evaluation rule proved by TWO-TIMING MEN and
WOMEN, Electron. J. Combin. 4 (no. 2, “The Wilf Festschrift”) (1997), #R22, 2 pp. (p. 12)
[201] J. Zeng, Sur quelques propri´tes de sym´trie des nombres de Genocchi, Discrete Math. 153
e e
(1996), 319“333. (p. 48)

¨ ¨
Institut fur Mathematik der Universitat Wien, Strudlhofgasse 4, A-1090 Wien, Aus-
tria.
e-mail: KRATT@Pap.Univie.Ac.At, WWW: http://radon.mat.univie.ac.at/People/kratt

<< . .

. 11
( : 11)