<< . .

. 93
( : 97)



. . >>

53.22 53. Appendix: Projective resolutions of identity on Banach spaces 595

53.22. Theorem. [Bartle, Graves, 1952] Let T : E ’ F be a bounded linear
surjective mapping between Banach spaces. Then there exists a continuous mapping
S : F ’ E with T —¦ S = Id.

Proof. By the open mapping theorem there is a constant M0 > 0 such that for all
y ¤ 1 there exists an x ∈ T ’1 (y) with y ¤ M0 . In fact there is an M0 such
that B1/M0 ⊆ T (B1 ) or equivalently B1 ⊆ T (BM0 ). Let (fγ )γ∈“ be a continuous
partition of unity on oF := {y ∈ F : y ¤ 1} with diam(supp(fγ )) ¤ 1/2. Choose
xγ ∈ T ’1 (carr(fγ )) with xγ ¤ M0 and for y ¤ 1 set

S0 y := fγ (y)xγ and recursively
γ∈“
1
Sn (an (y ’ T Sn y)),
Sn+1 y := Sn y +
an
n
where an := 22 .
By induction we show that the continuous mappings Sn : {y : y ¤ 1} ’ E satisfy
n’1
y ’ T Sn y ¤ 1/an and Sn y ¤ Mn := M0 · k=0 (1 + 1/ak ).
(n = 0) Obviously S0 y ¤ fγ (y) xγ ¤ M0 and
γ

1
y ’ T S0 y = fγ (y)(y ’ T xγ ) ¤ fγ (y) y ’ T xγ ¤ = a0 ,
2
γ γ∈“y


where “y := {γ ∈ “ : fγ (y) = 0}.
(n + 1) For y ¤ 1 and yn := an (y ’ T Sn y) we have yn ¤ 1 by induction
hypothesis. Then

1 1
Sn+1 y ¤ Sn y + S n y n ¤ Mn + Mn = Mn+1 .
an an

Furthermore
1
y ’ T Sn+1 y = y ’ T Sn y ’ T Sn (an (y ’ T Sn y))
an
1 1 1 1
¤ y n ’ T S n yn ¤ · = .
an an an an+1

Now (Sn ) is Cauchy with respect to uniform convergence on {y : y ¤ 1}. In fact

1 Mn M∞
Sn+1 y ’ Sn y ¤ Sn (an (y ’ T Sn y)) ¤ ¤ ,
an an an

where M∞ := limn Mn . Thus S := limn Sn is continuous and y’T Sy = limn y’
T Sn y = 0, i.e. T Sy = y. Now S : F ’ E de¬ned by S(y) := y S( y ) and
y
S(0) := 0 is the claimed continuous section.



53.22
596




53.22
597

References
Abraham, R., Lectures of Smale on di¬erential topology, Lecture Notes, Columbia University,
New York, 1962.
Adam, E., Smoothly real compact spaces, Diplomarbeit, Universit¨t Wien, 1993.
a
Adam, E., Approximation properties and spaces of smooth functions, doctoral thesis, Universit¨t
a
Wien, Vienna, 1995.
Adam, E.; Bistr¨m, P.; Kriegl, A., Countably evaluating homomorphisms on real function alge-
o
bras, Archivum mathematicum 35 (1999), 165“192.
Adams, M.; Ratiu, T.; Schmid, R., The Lie group structure of di¬eomorphism groups and invert-
ible Fourier Integral operators, In¬nite dimensional groups with applications (V. Kac, ed.),
Springer-Verlag, New York, 1985, pp. 1“69.
Adams, M.; Ratiu, T.; Schmid, R., A Lie group structure for pseudo di¬erential operators, Math.
Ann. 273 (1986a), 529“551.
Adams, M.; Ratiu, T.; Schmid, R., A Lie group structure for Fourier integral operators, Math.
Ann. 276 (1986b), 19“41.
Aharoni, I.; Lindenstrauss, J., Uniform equivalence between Banach spaces, Bull. Am. Math. Soc.
84 (1978), 281“283.
Alekseevsky, D.; Michor, P.W., Di¬erential geometry of g-manifolds, Di¬er. Geom. Appl. 5
(1995a), 371“403.
Alekseevsky, D.; Michor, P.W., Di¬erential geometry of Cartan connections, Publ. Math. 47
(1995b), 349“375.
Alekseevsky, D.; Kriegl, A.; Losik, M.; Michor, P.W., Choosing roots of polynomials smoothly,
Israel J. Math 105 (1998), 203-233, math.CA/9801026.
Ambrose, W.; Palais, R.S.; Singer, I.M., Sprays, An. Acad. Bras. Cienc. 32 (1960), 163“178.
Amir, D.; Lindenstrauss, J., The structure of weakly compact sets in Banach spaces, Ann. Math.
88 (1968), 35“46.
Argyros, S.; Mercourakis, S.; Negrepontis, S., Functional-analytic properties of Corson-compact
spaces, Stud. Math. 89 (1988), 197“229.
Arias-de-Reyna, J., A real valued homomorphism on algebras of di¬erentiable functions, Proc.
Am. Math. Soc. 104, No. 4 (1988), 1054“1058.
Arnold, V.I., Sur la g´ometrie di¬erentielle des groupes de Lie de dimension in¬nie et ses appli-
e
cations ` l™hydrodynamique des ¬‚uides parfaits, Ann. Inst. Fourier 16 (1966a), 319“361.
a
Arnold, V.I., An a priori estimate in the theory of hydrodynamic stability, Russian, Izv. Vyssh.
Uchebn. Zaved. Mat. 54,5 (1966b), 3“5.
Arnold, V.I., Mathematical methods of classical mechanics, Graduate Texts in Math. 60, Springer-
Verlag, New York, Heidelberg, 1978.
Aron, R.M., Compact polynomials and compact di¬erentiable mappings between Banach spaces,
Sem. P. Lellong 1974/1975, Lecture notes in Math. 524, Springer-Verlag, 1976, pp. 231“222.
Aronszajn, N., Di¬erentiability of Lipschitzian mappings between Banach spaces, Stud. Math. 57
(1976), 147“190.
Asplund, E., Fr´chet di¬erentiability of convex functions, Acta Math. 121 (1968), 31“48.
e
Atiyah, M., Complex analytic connections on ¬ber bundles, Trans. Am. Math. Soc. 85 (1957),
181“207.
Averbukh, V.I.; Smolyanov, O.G., The various de¬nitions of the derivative in linear topological
spaces, Russ. Math. Surv. 23 (1968), 67“113.
Balanzat, M.M., La di¬´rential en les espacios m´tricas a¬nes, Math. Notae 9 (1949), 29“51.
e e
Balanzat, M.M., La di¬´rentielle d™Hadamard-Fr´chet dans les espaces vectoriels topologiques, C.
e e
R. Acad. Sci. Paris 251 (1960), 2459“2461.
Banach, S., Th´orie des op´rations lin´aires, Warszawa, 1932.
e e e
Banaszczyk, W., On the existence of exotic Banach Lie groups, Math. Ann. 264 (1983), 485“493.
Banaszczyk, W., Characterization of nuclear spaces by means of additive subgroups, Math. Z. 186
(1984), 125“133.
Banaszczyk, W., Pontryagin duality for subgroups and quotients of nuclear spaces, Math. Ann.
273 (1986), 653“664.
Banaszczyk, W., Additive subgroups of topological vector spaces, Lecture Notes in Math. 1466,
Springer-Verlag, 1991.
598 References

Banyaga, A., Sur la structure du groupe des di¬eomorphismes qui preservent une forme symplec-
tique, Comment. Math. Helv. 53 (1978), 174“227.
Banyaga, A., On ¬xed points of symplectic maps, Invent. Math. 56 (1980), 215“229.
Bartle, R.G.; Graves, L.M., Mappings between function spaces, Trans. Am. Math. Soc. 72 (1952),
400“413.
Bastiani, A., Applications di¬´rentiables et vari´t´s di¬´rentiables de dimension in¬nie, J. Anal.
e ee e
Math. 13 (1964), 1“114.
Baumg¨rtel, H., Endlichdimensionale analytische St¨rungstheorie, Akademie-Verlag, Berlin, 1972.
a o
Bemelmans, J.; Hildebrandt, St.; von Wahl, W., Partielle Di¬erentialgleichungen und Variantion-
srechnung, Ein Jahrhundert Mathematik 1890“1990 (Fischer, G.; Hirzebruch, F.; Scharlau,
W.; T¨rnig, W., eds.), Festschrift zum Jubil¨um der DMV, Vieweg, Braunschweig, Wiesbaden,
o a
1990, pp. 149“230.
Bessaga, C., Every in¬nite-dimensional Hilbert space is di¬eomorphic with its unit sphere, Bull.
Pol. Acad. Sci. Math. 14 (1966), 27“31.
Bessaga, C.; Pelczy´ski, A., Selected topics in in¬nite dimensional topology, Monogra¬e Matem-
n
atyczne, Tom 58, Polish Scienti¬c Publishers, Warszawa, 1975.
Binz, E., Ein Di¬erenzierbakeitsbegri¬ in limitierten Vektorr¨umen, Comment. Math. Helv. 41
a
(1966), 137“156.
Binz, E., Two natural metrics and their covariant derivatives on a manifold of embeddings,
Monatsh. Math. 89 (1980), 275“288.
Binz, E.; Fischer, H.R., The manifold of embeddings of a closed manifold, Proc. Di¬erential geo-
metric methods in theoretical physics, Clausthal 1978, Lecture Notes in Physics 139, Springer-
Verlag, 1981.
Bistr¨m, P., The homomorphisms on algebras of functions de¬ned on locally convex spaces and
o
bounding sets, Doctoral thesis, University of ˚bo, 1993.
A
Bistr¨m, P.; Bjon, S.; Lindstr¨m, M., Homomorphisms on some function algebras, Monatsh.
o o
Math. 111 (1990), 5.
Bistr¨m, P.; Bjon, S.; Lindstr¨m, M., Function algebras on which homomorphisms are point
o o
evaluations on sequences, Manuscr. Math. 73 (1991), 179“185.
Bistr¨m, P.; Bjon, S.; Lindstr¨m, M., Remarks on homomorphisms on certain subalgebras of
o o
C(X), Math. Jap. 37 (1992), 105“109.
Bistr¨m, P.; Bjon, S.; Lindstr¨m, M., On C m -bounding sets, J. Aust. Math. Soc. 54 (1993),
o o
20“28.
Bistr¨m, P.; Jaramillo, J.A., C ∞ -bounding sets and compactness, Math. Scand. 75 (1994), 82“86.
o
Bistr¨m, P.; Jaramillo, J.A.; Lindstr¨m, M., Algebras of real analytic functions; Homomorphisms
o o
and bounding sets, Stud. Math. 115 (1995), 23“37.
Bistr¨m, P.; Lindstr¨m, M., Homomorphisms on C ∞ (E) and C ∞ -bounding sets, Monatsh. Math.
o o
115 (1993a), 257“266.
Bistr¨m, P.; Lindstr¨m, M., Characterization of the spectra of certain function algebras, Arch
o o
Math. 60 (1993b), 177“181.
Bochnak, J.; Siciak, J., Analytic functions in topological vector spaces, Stud. Math. 39 (1971),
77“112.
Bockstein, M., Une th´or`me de s´parabilit´ pour les produits topologiques, Fundam. Math. 35
ee e e
(1948), 242“246.
Bolza, O., Vorlesungen uber Variationsrechnung, Leipzig, 1909; Second edition, New York, Chel-
¨
sea, 1962.
Boman, J., Di¬erentiability of a function and of its compositions with functions of one variable,
Math. Scand. 20 (1967), 249“268.
Bonic, R.; Frampton, J., Di¬erentiable functions on certain Banach spaces, Bull. Am. Math. Soc.
71 (1965), 393“395.
Bonic, R.; Frampton, J., Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966),
877“898.
Bonic, R.; Reis, F., A characterization of Hilbert space, An. Acad. Bras. Cienc. 38 (1966), 239“
241.
Boothby, W.M., The transitivity of the automorphisms of certain geometric structures, Trans.
Am. Math. Soc. 137 (1969), 93“100.
Borel, A.; Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. Math. 75 (1962),
485“535.
References 599

Borel, A.; Serre, J.P., Corners and arithmetic groups, Comment. Math. Helv. 48 (1973), 436“491.
Borwein, J.; Fitzpatrick, S.; Kenderov, P., Minimal convex uscos and monotone operators on
small sets, Can. J. Math. 43 (1991), 461“476.
Bourbaki, N., General Topology, Hermann, Paris, 1966.
Bourguignon, J.-P., Une strati¬cation de l™espace des structures Riemanniens, Compos. Math. 30
(1975), 1“41.
Br¨cker, T.; J¨nich, K., Einf¨hrung in die Di¬erentialtopologie, Heidelberger Taschenb¨ cher 143,
o a u u
Springer-Verlag, Heidelberg, 1973.
Browder, W., Di¬eomorphisms of 1-connected manifolds, Trans. Am. Math. Soc. 128 (1967),
155“163.
Brown, R., Some problems of algebraic topology, Ph. D. Thesis, Oxford, 1961.
Brown, R., Ten topologies for X — Y , Q. J. Math. Oxf. 14 (1963), 303“319.
Brown, R., Function spaces and product topologies, Q. J. Math. Oxf. 15 (1964), 238“250.
Buchwalter, H., Espaces vectoriels bornologiques, Publ. Dep. Math. Lyon 2 (1965), 1“53.
Cap, A.; Kriegl, A.; Michor, P.W.; Vanˇura, J., The Fr¨licher-Nijenhuis bracket in non commu-
z o
tative di¬erential geometry, Acta Math. Univ. Comenianae 62 (1993), 17“49.
Carne, T.K.; Cole, B.; Gamelin, T.W., A uniform algebra of analytic functions on a Banach
space, Trans. Am. Math. Soc. 314 (1989), 639“659.
Cartan, H.; Eilenberg, S., Homological Algebra, Princeton University Press, Princeton, 1956.
Cascales, B.; Orihuela, J., On compactness in locally convex spaces, Math. Z. 195 (1987), 365“381.
Cerf, J., La strati¬cation naturelle des espaces de fonctions di¬´rentiables re´lles et le th´or´me
e e ee
de la pseudoisotopie, Publ. Math. Inst. Hautes Etud. Sci. 39 (1970).
Cervera, V.; Mascaro, F.; Michor, P.W., The orbit structure of the action of the di¬eomorphism
group on the space of immersions, Di¬er. Geom. Appl. 1 (1991), 391“401.
Ciesielski, K.; Pol, R., A weakly Lindel¨f function space C(K) without continuous injection into
o
c0 (“), Bull. Pol. Acad. Sci. Math. 32 (1984), 681“688.
Cigler, J.; Losert, V.; Michor, P.W., Banach modules and functors on categories of Banach spaces,
Lecture Notes in Pure and Applied Mathematics 46, Marcel Dekker Inc., 1979, pp. xv+282.
Collier, J.B., A class of strong di¬erentiability spaces, Proc. Am. Math. Soc. 53 (1975), 420“422.
Colombeau, J.F., Di¬´rentiation et Bornologie, Dissertation, Bordeaux, 1973.
e
Colombeau, J.F., In¬nite dimensional C ∞ -mappings with a given sequence of derivatives at a
given point, J. Math. Anal. Appl. 71 (1979), 95“104.
Colombeau, J.F., Di¬erential Calculus and Holomorphy, Math. Studies 64, North Holland, Ams-
terdam, 1982.
Colombeau, J.F.; Meise, R., C ∞ -functions on locally convex and on bornological vector spaces,
Functional analysis, holomorphy, and approximation theory, Proc. Semin., Rio de Janeiro
1978, Lect. Notes Math. 843, Springer-Verlag, 1981, pp. 195“216.
Colombeau, J.F.; Perrot, B., The (partial d) equation in DFN spaces., J. Math. Anal. Appl. 78
(1980), 466“487.
Corson, H.H., The weak topology of a Banach space, Trans. Am. Math. Soc. 101 (1961), 1“15.
Cudia, D., The geometry of Banach spaces. Smoothness, Trans. Am. Math. Soc. 110 (1964),
284“314.
Daniell, P.J., The derivative of a functional, Bull. Am. Math. Soc. 25 (1919), 414“416.
Day, M.M., Strict convexity and smoothness of normed spaces, Trans. Am. Math. Soc. 78 (1955),
516“528.
Deville, R.; Godefroy, G.; Zizler, V.E., The three space problem for smooth partitions of unity and
C(K) spaces, Math. Ann. 288 (1990), 613“625.
Deville, R.; Godefroy, G.; Zizler, V.E., Smoothness and renormings in Banach spaces, Pitman
Monographs and Surveys in Pure and Applied Mathematics 64, Longman, John Wiley, Lon-
don, New York, 1993.
De Wilde, M., Closed graph theorems and webbed spaces, Pitman, London, 1978.
DeWitt, B.S., Quantum theory of gravity. I. The canonical theory, Phys. Rev. 160 (5) (1967),
1113“1148.
Diestel, J., Geometry of Banach spaces, selected topics, Lecture Notes in Math. 485, Springer-
Verlag, 1975, pp. New York.
Diestel, J., Sequences and series in Banach spaces, Springer Verlag, 1984.
´
Dieudonn´, J., Sur les espaces uniformes complets, Ann. Sci. Ec. Norm. Super. 56 (1939), 277“
e
291.
600 References

Dieudonn´, J.A., Foundations of modern analysis, I, Academic Press, New York, London, 1960.
e
Dieudonn´, J., Sur un theoreme de Glaeser, J. Anal. Math. 23 (1970), 85“88.
e
Douady, A., Le probl`me des modules pour les sous-espaces analytiques compacts d™un espace
e
analytique donn´, Ann. Inst. Fourier 16 (1966), 1“95.
e
Dubois-Violette, M.; Michor, P.W., A common generalization of the Fr¨licher-Nijenhuis bracket
o
and the Schouten bracket for symmetric multi vector ¬elds, Indag. Math. New Ser. 6 (1995),
51“66.
Dubois-Violette, M.; Michor, P.W., More on the Fr¨licher-Nijenhuis bracket in non commutative
o
di¬erential geometry, J. Pure Appl. Algebra 121 (1997), 107“135, dg-ga/9410007.
Ebin, D., The manifold of Riemannian metrics, Proc. Symp. Pure Math. 15, Am. Math. Soc.,
1970, pp. 11“40.
Ebin, D.G.; Marsden, J.E., Groups of di¬eomorphisms and the motion of an incompressible ¬‚uid,
Ann. Math. 92 (1970), 102“163.
Edgar, G.A., Measurability in Banach spaces, Indiana Univ. Math. J. 26 (1977), 663“677.
Edgar, G.A., Measurability in a Banach space, II, Indiana Univ. Math. J. 28 (1979), 559“579.
Eells, J., A setting for global analysis, Bull. Am. Math. Soc. 72 (1966), 571“807.
Eells, J.; Elworthy, K.D., Open embeddings of certain Banach manifolds, Ann. Math. 91 (1970),
465“485.
Eichhorn, J., Gauge theory on open manifolds of bounded geometry, Int. J. Mod. Phys. A 7 (1992),
3927“3977.
Eichhorn, J., The manifold structure of maps between open manifolds, Ann. Global Anal. Geom.
11 (1993), 253“300.
Eichhorn, J., Spaces of Riemannian metrics on open manifolds, Result. Math. 27 (1995), 256-283.
Ehresmann, C., Les prolongements d™une vari´t´ di¬´rentiable, I: Calcul des jets, prolongement
ee e
principal, II: L™espace des jets d™ordre r de Vn dans Vm , C. R. Acad. Sci. Paris 233 (1951),
598“600, 777“779.
Ekeland, I.; Lebourg, G., Generic Fr´chet-di¬erentiability and perturbed optimization problems
e
in Banach spaces, Trans. Am. Math. Soc. 224 (1976), 193“216.
En¬‚o, P., Uniform structures and square roots in topological groups II, Isr. J. Math. 9 (1970),
253“272.
En¬‚o, P., On Banach spaces which can be given an equivalent uniformly convex norm, Isr. J.
Math. 13 (1972), 114“146.
En¬‚o, P.; Lindenstrauss, J.; Pisier, G., On the ˜three space problem™, Math. Scand. 36 (1975),
199“210.
Engelking, R., Outline of General Topology, Polish Scienti¬c Publishers, Warszawa, 1968.
Engelking, R., General Topology, revised and completed edition, Heldermann-Verlag, Berlin, 1989.
Epstein, D.B.A., The simplicity of certain groups of homeomorphisms, Compos. Math. 22 (1970),
165“173.
Fabian, M.; Godefroy, G., The dual of every Asplund space admits a projectional resolution of
identity, Stud. Math. 91 (1988), 141“151.
Fantappi´, L., I functionali analitici, Atti Accad. Naz. Lincei, Mem. 3“11 (1930), 453“683.
e
¨
Fantappi´, L., Uberblick uber die Theorie der analytischen Funktionale und ihre Anwendungen,
e ¨
Jahresber. Dtsch. Math. Ver. 43 (1933), 1“25.
Faure, C.-A., Sur un th´or`me de Boman, C. R. Acad. Sci. Paris 309 (1989), 1003“1006.
ee
Faure, C.-A., Th´orie de la di¬´rentiation dans les espaces convenables, Th´se, Universit´ de
e e e e
Gen´ve, 1991.
e
Federer, H., Geometric Measure Theory, Springer-Verlag, Berlin, 1969.
Fitzpatrick, S., Metric projections and the di¬erentiability of distance functions, Bull. Aust. Math.
Soc. 22 (1980), 291“312.
Floret, K., Lokalkonvexe Sequenzen mit kompakten Abbildungen, J. Reine Angew. Math. 247
(1971), 155“195.
Fr´chet, M., Sur la notion de di¬´rentielle, C. R. Acad. Sci. Paris 152 (1911), 845“847, 1050“1051.
e e
Fr´chet, M., Sur la notion de di¬´rentielle dans l™analyse g´n´rale, C. R. Acad. Sci. Paris 180
e e ee
(1925a), 806“809.
Fr´chet, M., La notion de di¬´rentielle dans l™Analyse g´n´rale, Ann. Sci. Ec. Norm. Super. XLII
e e ee
(1925b), 293“323.
Fr´chet, M., Sur la notion de di¬´rentielle, J. Math. Pures Appl. 16 (1937), 233“250.
e e
References 601

Freed, D.S. ; Groisser, D., The basic geometry of the manifold of Riemannian metrics and of its
quotient by the di¬eomorphism group, Mich. Math. J. 36 (1989), 323“344.
Freed, D.; Uhlenbeck, K., Instantons and 4-manifolds, MSRI Publications 1, Springer-Verlag,
New York, 1984.
Freedman, M.H., The topology of four dimensional manifolds, J. Di¬er. Geo. 17 (1982), 357“454.
Freifeld, C., One-parameter subgroups do not ¬ll a neighborhood of the identity in an in¬nite
dimensional Lie (pseudo)-group, Battelle Rencontres, Lectures in Mathematics and Physics,
Benjamin, New York, 1967, pp. 538“543.
Fr¨licher, A., Categories cart´siennement ferm´es engendr´es par des monoides, Cah. Topologie
o e e e
G´om. Di¬er. 21 (1980), 367“375.
e
Fr¨licher, A., Applications lisses entre espaces et vari´t´s de Fr´chet, C. R. Acad. Sci. Paris 293
o ee e
(1981), 125“127.
Fr¨licher, A.; Bucher, W., Calculus in vector spaces without norm, Lecture Notes in Math. 30,
o
Springer-Verlag, Heidelberg, 1966.
Fr¨licher, A.; Gisin, B.; Kriegl, A., General di¬erentiation theory, Various publications series No.
o
35, Aarhus Universitet, 1983, pp. 125“153.
Fr¨licher, A.; Kriegl, A., Convergence vector spaces for Analysis, Convergence Structures 1984,
o
Akademie Verlag, Berlin, 1985, pp. 115“126.
Fr¨licher, A.; Kriegl, A., Linear spaces and di¬erentiation theory, Pure and Applied Mathematics,
o
J. Wiley, Chichester, 1988.
Fr¨licher, A.; Kriegl, A., Di¬erentiable extensions of functions, Di¬er. Geom. Appl. 3 (1993),
o
71“90.
Fuks, D.B., Cohomology of in¬nite dimensional Lie algebras, (Russian), Nauka, Moscow, 1984;
English, Contemporary Soviet Mathematics, Consultants Bureau (Plenum Press), New York,
1986.
Fulp, R.O., Connections on the path bundle of a principal ¬ber bundle, Di¬er. Geom. Appl. 4
(1994), 201“237.
Gabriel, P.; Zisman, M., Fondements de la topologie simpliciale, S´minaire homotopique, Univer-
e
sit´ de Strasbourg, 1963/64.
e
G¨hler, W., Grundstrukturen der Analysis I, II, Birkh¨user/Akademie Verlag, Basel/Berlin, 1977,
a a
1978.
Garrido, I.; G´mez, J.; Jaramillo, J.A., Homomorphisms on function algebras, Can. J. Math. 46
o
(1994), 734“745.
Gˆteaux, M.R., Sur les fonctionnelles continues et les fonctionnelles analytiques, C. R. Acad.
a
Sci. Paris 157 (1913), 325“327.
Gˆteaux, M.R., Fonctions d™une in¬nit´ de variables independantes, Bull. Soc. Math. Fr. 47
a e
(1919), 70“96.
Gˆteaux, M.R., Sur les fonctionnelles continues et les fonctionnelles analytiques, Bull. Soc. Math.

<< . .

. 93
( : 97)



. . >>