<< . .

. 94
( : 97)



. . >>

a
Fr. 50 (1922), 1“21.
Gelfand, I.M.; Dorfman, I.Y., Hamiltonian operators and the algebraic structures connected with
them, Funct. Anal. Appl. 13 (1979), 13“30.
Gieraltowska-Kedzierska, M.; Van Vleck, F.S., Fr´chet di¬erentiability of regular locally Lipschitz-
e
ian functions, J. Math. Anal. Appl. 159 (1991), 147“157.
Gillman, L.; Jerison, M., Rings of continuous functions, Van Nostrand, Princeton, 1960.
Gil-Medrano, O.; Michor, P.W., The Riemannian manifold of all Riemannian metrics, Q. J.
Math. Oxf. 42 (1991), 183“202.
Gil-Medrano, O.; Michor, P.W.; Neuwirther, M., Pseudoriemannian metrics on spaces of bilinear
structures, Q. J. Math. Oxf. 43 (1992), 201“221.
Gil-Medrano, O.; Michor, P.W., Pseudoriemannian metrics on spaces of almost hermitian struc-
tures, Israel J. Math. 8 (1994), 319“332.
Glaeser, G., Racine carr´ d™une fonction di¬´rentiable, Ann. Inst. Fourier 13,2 (1963), 203“210.
e e
Godefroy, G.; Pelant, J.; White¬eld, J.H.M.; Zizler, V.E., Banach space properties of Ciesielski-
Pol™s C(K)-space, Proc. Am. Math. Soc. 103 (1988), 1087“1093.
Godefroy, G.; Troyanski, S.L; Whit¬eld, J.H.M; Zizler, V.E., Smoothness in weakly compactly
generated spaces, J. Funct. Anal. 52 (1983), 344“352.
Godefroy, G.; Troyanski, S.L.; Whit¬eld, J.H.M; Zizler, V.E., Locally uniformly rotund renorming
and injection into c0 (“), Can. Math. Bull. 27 (1984), 494“500.
Godement, R., Topologie alg´brique et th´orie des fausceaux, Hermann, Paris, 1958.
e e
602 References

G´mez, J.; Llavona, J.G., Multiplicative functionals on function algebras, Rev. Mat. Univ. Com-
o
plutense Madrid 1 (1988), 19“22.
Grabowski, J., Free subgroups of di¬eomorphism groups, Fundam. Math. 131 (1988), 103“121.
Grabowski, J., Derivative of the exponential mapping for in¬nite dimensional Lie groups, Ann.
Global Anal. Geom. 11 (1993), 213“220.
Grauert, H., On Levi™s problem and the embedding of real analytic manifolds, Ann. Math. 68
(1958), 460“472.
Greub, W.; Halperin, S.; Vanstone, R., Connections, Curvature, and Cohomology I, II, III,
Academic Press, New York, London, 1972, 1973, 1976.
Gri¬ths, P., On Cartan™s method of Lie groups and moving frames as applied to uniqueness and
existence questions in di¬erential geometry, Duke Math. J. 41 (1974), 775“814.
Gromov, M., Partial di¬erential relations, Ergebnisse 3. Folge, Band 9, Springer-Verlag, Berlin,
Heidelberg, New York, 1986.
Grothendieck, A., Sur certains espaces de fonctions holomorphes. I, J. Reine Angew. Math. 192
(1953), 35“64.
Grothendieck, A., Produits tensoriels topologiques et espaces nucl´aires, Mem. Am. Math. Soc.
e
16, Am. Math. Soc., 1955.
Gunning, R.C.; Rossi, H., Analytic functions in several complex variables, Prentice-Hall, Engle-
wood Cli¬s, N.J., 1965.
G¨nther, M., Beitr¨ge zur lokalen L¨sbarkeit nichtlinearer partieller Di¬erentialgleichungen, Dis-
u a o
sertation, Karl-Marx-Universit¨t, Leipzig, 1988, pp. 150.
a
G¨nther, M., On the perturbation problem associated to isometric embeddings of Riemannian
u
manifolds, Ann. Global Anal. Geom. 7,1 (1989), 69“77.
G¨nther, M., Isometric embeddings of Riemannian manifolds, Proc. Int. Congr. Math., Kyoto
u
1990, Vol. II, 1991, pp. 1137“1143.
Hadamard, J., Le¸ons sur le calcul des variations, Hermann, Paris, 1910.
c
Hadamard, J., La notion de di¬´rentielle dans l™enseignement, Scripta Univ. Ab. 3, Bib Hi-
e
erosolymitanarum, J´rusalem, 1923.
e
¨
Hahn, H., Uber lineare Gleichungssysteme in linearen R¨umen, J. Reine Angew. Math. 157
a
(1926), 214“229.
Hahn, H., Reelle Funktionen I (1932), Leipzig.
Hamilton, R.S., The inverse function theorem of Nash and Moser, Bull. Am. Math. Soc. 7 (1982),
65“222.
de la Harpe, P., Classical Banach-Lie algebras and Banach-Lie groups of operators in Hilbert
space, Lecture Notes in Math. 285, Springer-Verlag, 1972.
Hatakeyama, Y., Some notes on the groups of automorphisms of contact and symplectic struc-
tures, Tˆhoku Math. J. 18 (1966), 338“347.
o
Hatcher, A., A proof of a Smale conjecture, Ann. Math. 117 (1983), 553“607.
Hatcher, A.; Wagoner, J., Pseudo-isotopies of compact manifolds, Asterisque 6 (1973).
Haydon, R., A counterexample to several questions about scattered compact spaces, Bull. Lond.
Math. Soc. 22 (1990), 261“268.
Haydon, R., Trees and renormings, Publ. Math. Univ. Pierre Marie Curie 104, No.8 (1991).
Heber, G., Die Topologie des Kon¬gurationsraumes der Yang-Mills-Theorie uber o¬enen Man-
¨
nigfaltigkeiten beschr¨nkter Geometrie, Dissertation, Universit¨t Greifswald, 1994.
a a
Hewitt, E., Rings of real valued continuous functions. I, Trans. Am. Math. Soc. 64 (1948), 45“99.
Hewitt, E., Linear functionals on spaces of continuous functions, Fundam. Math. 37 (1950),
161“189.
Hirai, T., Irreducible unitary representations of the group of di¬eomorphisms of a non-compact
manifold, J. Math. Kyoto Univ. 33, 3 (1993), 827“864.
Hirsch, M.W., Di¬erential topology, GTM 33, Springer-Verlag, New York, 1976.
Hirzebruch, F., Neue topologische Methoden in der algebrischen Topologie, Ergebnisse der Math.
9, 2. edition, Springer-Verlag, Berlin, G¨ttingen, Heidelberg, 1962.
o
Hogbe-Nlend, H., Compl´tions, tenseurs, nucl´arit´ en bornologie, J. Math. Pures Appl. (1970).
e e e
Hogbe-Nlend, H., Th´orie des Bornologies et Applications, Lecture Notes in Math. 213, Springer-
e
Verlag, Berlin, 1971.
Hogbe-Nlend, H., Bornologies and Functional Analysis, Math. Studies 26, North Holland, Ams-
terdam, 1977.
References 603

H¨rmander, L., The Analysis of linear partial di¬erential operators I, Grundlehren 256, Springer-
o
Verlag, Berlin, 1983.
Horv´th, J., Topological vector spaces and distributions, Addison Wesley, Reading, Mass., 1966.
a
Igusa, K., What happens to Hatcher and Wagoner™s formula for π0 (C(M )) when the ¬rst Post-
nikoc invariant of M is nontrivial, Lecture Notes in Math. 1046, Springer-Verlag, New York,
Heidelberg, 1984, pp. 104“172.
Imayoshi, Y., Holomorphic maps of compact Riemannian surfaces into 2-dimensional compact
C-hyperbolic manifolds, Math. Ann. 270 (1985), 403“416.
Imayoshi, Y., Holomorphic maps of projective algebraic manifolds into compact C-hyperbolic
manifolds, J. Math. Soc. Japan 46 (1994), 289“307.
Jacobowitz, H., Implicit function theorems and isometric embeddings, Ann. Math. 95 (1972),
191“225.
James, R.C., A non-re¬‚exive Banach space isometric with its second conjugate space, Proc. Natl.
Acad. Sci. USA 37 (1951), 174“177.
Jaramillo, J.A., Multiplicative functionals on algebras of di¬erentiable functions, Arch Math. 58
(1992), 384“387.
Jarchow, H., Locally convex spaces, Teubner, Stuttgart, 1981.
Jayne, J.E.; Rogers, C.A., Borel selectors for upper semicontinuous set valued maps, Acta Math.
155 (1985), 41“79.
John, K.; Torunczyk, H.; Zizler, V., Uniformly smooth partitions of unity on superre¬‚exive Banach
spaces, Stud. Math. 70 (1981), 129“137.
John, K.; Zizler, V., A note on strong di¬erentiability spaces, Commentat. Math. Univ. Carol. 17
(1976), 127“134.
John, K.; Zizler, V., On rough norms on Banach spaces, Commentat. Math. Univ. Carol. 19
(1978), 335“349.
Johnson, W.B.; Lindenstrauss, J., Some remarks on weakly compactly generated Banach spaces,
Isr. J. Math. 17 (1974), 219“230.
Joris, H., Une C ∞ -application non-immersive qui poss`de la propri´t´ universelle des immer-
e ee
sions., Arch Math. 39 (1982), 269“277.
Josefson, B., Bounding subsets of ∞ (A), J. Math. Pures. Appl. 57 (1978), 397“421.
Kadec, M.I., Spaces isomorphic to a locally uniformly convex space, Izv. Vyssh. Uˇebn. Zaved.
c
Mat. 13 (1959), 51“57.
Kadec, M.I., Letters to the editors, Izv. Vyssh. Uˇebn. Zaved. Mat. 15 (1961), 139“141.
c
Kadec, M.I., Some conditions of the di¬erentiability of the norm of Banach spaces, Uspechi Mat.
Nauk 20 (1965), 183“187.
Kainz, G., A note on the manifold of immersions and its Riemannian curvature, Monatsh. Math.
98 (1984), 211“217.
Kainz, G. ; Kriegl, A. ; Michor, P.W., C ∞ -algebras from the functional analytic viewpoint, J.
Pure Appl. Algebra 46 (1987), 89“107.
Kainz, G.; Michor, P.W., Natural transformations in di¬erential geometry, Czech. Math. J. 37
(1987), 584“607.
Kashiwara, M.; Kawai, T.; Kimura, T., Foundations of algebraic analysis, Princeton Univ. Press,
Princeton, 1986.
Katˇtov, M., Measures in fully normal spaces, Fundam. Math. 38 (1951), 73“84.
e
Kato, T., Perturbation theory for linear operators, Grundlehren 132, Springer-Verlag, Berlin,
1976.
Keller, H.H., R¨ume stetiger multilinerarer Abbildungen als Limesr¨ume, Math. Ann. 159 (1965),
a a
259“270.
Keller, H.H., Di¬erential calculus in locally convex spaces, Lecture Notes in Math. 417, Springer-
Verlag, 1974.
Kenderov, P.S., The quasi-di¬erentiable functionals are almost everywhere di¬erentiable, Math.
Educ. 2 (1974), 123“126.
Kervaire, M; Milnor, J., Groups of homotopy spheres, I, Ann. Math. 77 (1963), 504“537.
Kirillov, A.A., Elements of the theory of representations, Springer-Verlag, Berlin, 1976.
Kirillov, A.A., The orbits of the group of di¬eomorphisms of the circle, and local Lie superalgebras,
Funct. Anal. Appl. 15 (1981), 135“136.
604 References

Kirillov, A.A., The orbit method I: geometric quantization; II: In¬nite dimensional Lie groups
and Lie algebras, Notes by J. Adams, A. Kleppner, R. Lipsman, J.-Sh. Li, and J. Rosenberg,
Department of Math., University of Maryland, 1991.
Knapp, A.W., Representation theory of semisimple Lie groups, Princeton University Press, Prince-
ton, 1986.
Kneser, A., Lehrbuch der Variationsrechnung, Vieweg, Braunschweig, 1900.
Kodaira, K; Spencer, D.C., On the deformations of complex analytic structures, Ann. Math. 67
(1958), 328“460.
Kodaira, K; Nirenberg, L; Spencer, D.C., On the existence of deformations of complex analytic
structures, Ann. Math. 68 (1958), 450“459.
Kol´ˇ, I.; Michor, P.W., Determination of all natural concomitants of the type of the Fr¨licher
ar o
Nijenhuis bracket, Rend. Circ. Mat. Palermo, Suppl. 16 (1987), 101“108.
Kol´ˇ, I.; Michor, P.W.; Slov´k, J., Natural operations in di¬erential geometry, Springer-Verlag,
ar a
Berlin, Heidelberg, New York, 1993.
Koppell, N., Commuting di¬eomorphisms, Proc. Symp. Pure Math. 14 (1970), Am. Math. Soc.,
165“184.
Koszul, J.L., Homologie et Cohomologie des alg`bres de Lie, Bull. Soc. Math. Fr. 78 (1950),
e
65“127.
K¨the, G., Dualit¨t in der Funktionentheorie, J. Reine Angew. Math. 191 (1953), 30“49.
o a
Kriegl, A., Eine Theorie glatter Mannigfaltigkeiten und Vektorb¨ndel, Dissertation, Universit¨t
u a
Wien, 1980.
Kriegl, A., Die richtigen R¨ume f¨r Analysis im Unendlich - Dimensionalen, Monatsh. Math. 94
a u
(1982), 109“124.
Kriegl, A., Eine kartesisch abgeschlossene Kategorie glatter Abbildungen zwischen beliebigen
lokalkonvexen Vektorr¨umen, Monatsh. Math. 95 (1983), 287“309.
a
Kriegl, A., A cartesian closed extension of the category of smooth Banach manifolds, Categorical
Topology, Proc. Conference Toledo, Ohio, 1983 (Bentley, L., eds.), Heldermann, Berlin, 1984,
pp. 323“336.
Kriegl, A., Remarks on germs in in¬nite dimensions, Acta Math. Univ. Comenianae 66 (1997),
1“18.
Kriegl, A.; Michor, P.W., A convenient setting for real analytic mappings, Acta Math. 165 (1990),
105“159.
Kriegl, A.; Michor, P.W., Aspects of the theory of in¬nite dimensional manifolds, Di¬er. Geom.
Appl. 1 (1991), 159“176.
Kriegl, A.; Michor, P.W., More smoothly real compact spaces, Proc. Am. Math. Soc. 117 (1993),
467“471.
Kriegl, A.; Michor, P.W., Regular in¬nite dimensional Lie groups, J. Lie Theory 7,1 (1997),
61“99, math.DG/9801007.
Kriegl, A.; Michor, P.W. ; Schachermayer, W., Characters on algebras of smooth functions, Ann.
Global Anal. Geom. 7, No. 2 (1989), 85“92.
Kriegl, A.; Nel, L.D., A convenient setting for holomorphy, Cah. Topologie G´om. Di¬er. 26
e
(1985), 273“309.
Kriegl, A.; Nel, L.D., Convenient vector spaces of smooth functions, Math. Nachr. 147 (1990), 7.
Kuranishi, M., On the locally complete families of complex analytic structures, Ann. Math. 75
(1962), 536“577.
Kurzweil, J., On approximation in real Banach spaces, Stud. Math. 14 (1954), 214“231.
Ky Fan, M., Sur quelques notions fondamentales de l™analyse g´n´rale, J. Math. Pures Appl. 21
ee
(1942), 289“368.
Lang, S., Di¬erential manifolds, Addison Wesley, 1972.
Lawvere, F.W., Categorical dynamics, Lectures given 1967 at the University of Chicago, reprinted
in, Topos Theoretical Methods in Geometry (A. Kock, ed.), Aarhus Math. Inst. Var. Publ.
Series 30, Aarhus Universitet, 1979.
Lawvere, F.W.; Schanuel, S.H.; Zame, W.R., On C ∞ -function spaces, Preprint, State University
of New York, Bu¬alo (1981).
Lazet, D., Sur la di¬´rentiabilit´ des applications analytiques en dimension in¬nie, C. R. Acad.
e e
Sci. Paris 273 (1971), 155“157.
Leach, E.B.; Whit¬eld, J.H.M., Di¬erentiable functions and rough norms on Banach spaces, Proc.
Am. Math. Soc. 33 (1972), 120“126.
References 605

Leduc, M., Densit´ de certaines familles d˜hyperplans tangents, C. R. Acad. Sci. Paris 270 (1970),
e
326“328.
Leslie, J., On a di¬erential structure for the group of di¬eomorphisms, Topology 6 (1967), 264“
271.
Leslie, J., On the group of real analytic di¬eomorphisms of a compact real analytic manifold,
Trans. Am. Math. Soc. 274 (2) (1982), 651“669.
L´vy, M.P., Le¸ons d™analyse fonctionnelle, Gauthier-Villars, Paris, 1922.
e c
Libermann, P.; Marle, C.M., Symplectic geometry and analytical mechanics, Mathematics and its
applications, D. Reidel, Dordrecht, 1987.
Lindenstrauss, J.; Tzafriri, L., On the complemented subspace problem,, Isr. J. Math. 9 (1971),
263“269.
Llavona, J.G., Approximation of continuously di¬erentiable functions, North-Holland, 1986.
Long de Foglio, S. Fernandez, La di¬´rentielle au sens d™Hadamard dans les espaces L vectorielles,
e
Port. Math. 19 (1960), 165“184.
Lovaglia, A.R., Locally uniformly convex Banach spaces, Trans. Am. Math. Soc. 78 (1955), 225“
238.
Lychagin, V., On su¬cient orbits of a group of contact di¬eomorphisms, Math. USSR Sb. 33
(1977), 223“242.
Mackey, G.W., Equivalence of a problem in measure theory to a problem in the theory of vector
lattices, Bull. Am. Math. Soc. 50 (1944), 719“722.
Mackey, G.W., On in¬nite dimensional spaces, Trans. Am. Math. Soc. 57 (1945), 155“207.
MacLaughlin, D.P., Smooth partitions of unity in preduals of WCG spaces, Math. Z. 211 (1992),
189“194.
Maissen, B., Lie Gruppen mit Banach R¨umen als Parameterr¨umen, Acta Math. 108 (1962),
a a
229“270.
¨
Maissen, B., Uber Topologien im Endomorphismenraum eines topologischen Vektorraums, Math.
Ann. 151 (1963), 283“285.
Malgrange, B., Ideals of di¬erentiable functions, Oxford Univ. Press, London, 1966.
Margalef Roig, J.; Outerelo Dominguez, E., Une variedad diferenciable de dimension in¬nita,
seperada y no regular, Rev. Mat. Hisp.-Amer. 42 (1982), 51“55.
Marinescu, G., Espaces vectoriels pseudo topologiques et le theorie des distributions, Deutsche
Verlag d. Wiss., Berlin, 1963.
Mather, J.N., Commutators of di¬eomorphisms I, Comment. Math. Helv. 49 (1974), 512“528.
Mather, J.N., Commutators of di¬eomorphisms II, Comment. Math. Helv. 50 (1975), 33“40.
Mather, J.N., A curious remark concerning the geometric transfer map, Comment. Math. Helv.
59 (1984), 86“110.
Mather, J.N., Commutators of di¬eomorphisms III, Comment. Math. Helv. 60 (1985), 122“124.
Mattes, J., On the convenient setting for real analytic mappings, Monatsh. Math. 116 (1993),
127“141.
Mauhart, M.; Michor, P.W., Commutators of ¬‚ows and ¬elds, Arch. Math. Brno 28 (1992),
228“236.
¨
Mazur, S., Uber konvexe Mengen in linearen normierten R¨umen, Stud. Math. 4 (1933), 70“84.
a
Mazur, S., On continuous mappings on cartesian products, Fundam. Math. 39 (1952), 229“238.
Mazur, S.; Orlicz, W., Grundlegende Eigenschaften der polynomischen Operationen, Stud. Math.
5 (1935), 50“68.
Meshkov, V.Z., Smoothness properties in Banach spaces, Stud. Math. 63 (1978), 111“123.
Michal, A.D., Di¬erential calculus in linear topological spaces, Proc. Natl. Acad. Sci. USA 24
(1938), 340“342.
Michor, P.W., Manifolds of smooth maps, Cah. Topologie G´om. Di¬er. 19 (1978), 47“78.
e
Michor, P.W., Manifolds of smooth maps II: The Lie group of di¬eomorphisms of a non compact
smooth manifold, Cah. Topologie G´om. Di¬er. 21 (1980a), 63“86.
e
Michor, P.W., Manifolds of smooth maps III: The principal bundle of embeddings of a non compact
smooth manifold, Cah. Topologie G´om. Di¬er. 21 (1980b), 325“337.
e
Michor, P.W., Manifolds of di¬erentiable mappings, Shiva, Orpington, 1980c.
Michor, P.W., The manifold of embeddings of a non compact manifold, Appendix to: E. Binz,
H.R. Fischer: The manifold of embeddings of a closed manifold, Proc. Di¬erential geometric
methods in theoretical physics, Clausthal 1978, Lecture Notes in Physics 139, Springer-Verlag,
1981.
606 References

Michor, P.W., Manifolds of smooth mappings IV: Theorem of De Rham, Cah. Topologie G´om. e
Di¬er. 24 (1983), 57“86.
Michor, P.W., A convenient setting for di¬erential geometry and global analysis I, II, Cah. Topolo-
gie G´om. Di¬er. 25 (1984a), 63“109, 113“178..
e
Michor, P.W., Applications of Hamilton˜s inverse function theorem to manifolds of mappings,
Proc. Convergence structures and applications II, Schwerin 1983, Akademie Verlag, Berlin,
1984b, pp. 159“162.
Michor, P.W., The cohomology of the di¬eomorphism group is a Gelfand-Fuks cohomology, Rend.
Circ. Mat. Palermo, Suppl. 14 (1987a), 235“ 246.
Michor, P.W., Remarks on the Fr¨licher-Nijenhuis bracket, Proc. Conference Di¬erential Geom-
o
etry and its Applications, Brno 1986, D. Reidel, 1987b, pp. 197“220.
Michor, P.W., Gauge theory for the di¬eomorphism group, Proc. Conf. Di¬erential Geometric
Methods in Theoretical Physics, Como 1987, K. Bleuler and M. Werner (eds), Kluwer, Dor-
drecht, 1988, pp. 345“371.
Michor, P.W., Knit products of graded Lie algebras and groups, Rend. Circ. Mat. Palermo, Suppl.
22 (1989), 171“175.
Michor, P.W., The moment mapping for a unitary representation, Ann. Global Anal. Geom. 8,
No 3 (1990), 299“313.
Michor, P.W., Gauge theory for ¬ber bundles, Monographs and Textbooks in Physical Sciences,
Lecture Notes 19, Bibliopolis, Napoli, 1991, pp. 107.
Michor, P.W., All unitary representations admit moment mappings, Colloquia Mathematica Soci-
etatis J´nos Bolyai, 56. Di¬erential Geometry, Eger (Hungary), 1989 (J. Szenthe, L. Tam´ssy,
a a
eds.), J´nos Bolyai Math. Soc. and Elsevier, Budapest and Amsterdam, 1992, pp. 477“489.
a
Michor, P.W.; Ratiu, T., Curvature of the Virasoro-Bott group, J. Lie Theory 8 (1997), 293-309,
math.DG/98015.
Michor, P.W.; Schichl, H., No slices on the space of generalized connections, Acta Math. Univ.
Comenianiae 66 (1997), 221“228, math.DG/9801023.
Michor, P.W.; Vanˇura, J., Characterizing algebras of smooth functions on manifolds, Commentat.
z
Math. Univ. Carol. 37,3 (1996), 519“521.
Michor, P.W.; Vizman, C., n-transitivity of certain di¬eomorphism groups, Acta Math. Univ.
Comenianae 63 (1994), 4.
Mikusinski, J., Distributions a valeurs dans le re´nions d™espaces de Banach, Stud. Math. 19
u
(1960), 251“285.
Milnor, J., Topology from the di¬erentiable viewpoint, University Press of Virginia, Charlottesville,
1965.
Milnor, J., Remarks on in¬nite dimensional Lie groups, Relativity, Groups, and Topology II, Les
Houches, 1983, B.S. DeWitt, R. Stora, Eds., Elsevier, Amsterdam, 1984.
Milnor, J.; Stashe¬, J., Characteristic classes, Annals of Math. Studies 76, Princeton University
Press, Princeton, 1974.
Moerdijk, I.; Reyes, G.E., Models for smooth in¬nitesimal analysis, Springer-Verlag, Heidelberg,
Berlin, 1991.
Moreau, J.J., Proximit´ et dualit´ dans un espace hilbertien, Bull. Soc. Math. Fr. 93 (1965),
e e
273“299.
Morrow, J., The denseness of complete Riemannian metrics, J. Di¬er. Geo. 4 (1970), 225“226.
Moser, J., A new technique for the construction of solutions of nonlinear di¬erential equations,
Proc. Natl. Acad. Sci. USA 47 (1961), 1824“1831.
Moser, J., A rapidly cenvergent iteration method and non-linear partial di¬erential equations I,
II, Ann. Sc. Norm. Super. Pisa 20 (1966), 265“315, 499“535.
Namioka, I.; Phelps, R.R, Banach spaces which are Asplund spaces, Duke Math. J. 42 (1975),
735“749.
Nash, J., The embedding problem for Riemannian manifolds, Ann. Math. 63 (1956), 20“63.
Natarajan, L.; Rodr´uez-Carrington, E.; Wolf, J.A., Di¬erentiable structures for direct limit
g
groups, Lett. Math. Phys. 23 (1991), 99“109.
Natarajan, L.; Rodr´uez-Carrington, E.; Wolf, J.A., New classes of in¬nite dimensional Lie
g
groups, Proceedings of the 1991 Am. Math. Soc. Summer Research Institute ˜Algebraic groups
and their generalizations™, Proc. Symp. Pure Math. 56, Pt. 2, AMS, Providence, 1994, pp. 377“
392.
References 607

Natarajan, L.; Rodr´uez-Carrington, E.; Wolf, J.A., Locally convex Lie groups, Nova J. Algebra
g
Geom. 2 (1993), 59“87.
Negrepontis, S., Banach spaces and topology,, Handbook of set theoretic topology (K. Kunen and
J.E. Vaughan, eds.), North-Holland, 1984.
Neuwirther, M., A family of pseudo metrics on the space of all pseudo metrics, Diplomarbeit,
Universit¨t Wien, 1990.
a
Neuwirther, M., Submanifold geometry and Hessians on the Pseudoriemanninan manifold of
metrics, Dr. rer. nat. Dissertation, Universit¨t Wien, 1992.
a
Neuwirther, M., Submanifold geometry and Hessians on the Pseudoriemanninan manifold of
metrics, Acta Math. Univ. Comenianae 62 (1993), 51“85.
Nijenhuis, A., On a class of common properties of some di¬erent types of algebras I, II, Nieuw
Arch. Wiskd. 17 (1969), 17“46, 87“108.
Nijenhuis, A.; Richardson, R., Cohomology and deformations in graded Lie algebras, Bull. Am.
Math. Soc. 72 (1966), 1“29.
Nijenhuis, A.; Richardson, R., Deformation of Lie algebra structures, J. Math. Mech. 17 (1967),
89“105.
Nomizu, K.; Ozeki, H., The existence of complete Riemannian metrics, Proc. Am. Math. Soc. 12
(1961), 889“891.
Omori, H., In¬nite dimensional Lie transformation groups, Lecture Notes in Math. 427, Springer-
Verlag, Berlin, 1974.
Omori, H., Theory of in¬nite dimensional Lie groups, Kinokuniya, 1978a. (Japanese)
Omori, H., On Banach Lie groups acting on ¬nite dimensional manifolds, Tˆhoku Math. J. 30
o
(1978b), 223“250.
Omori, H.; de la Harpe, P., About interactions between Banach Lie groups and ¬nite dimensional
manifolds, J. Math. Kyoto Univ. 12 (1972), 543“570.
Omori, H.; Maeda, Y.; Yoshioka, A., On regular Fr´chet Lie groups I. Some di¬erential geometric
e
expressions of Fourier integral operators on a Riemannian manifold, Tokyo J. Math. 3 (1980),
353“390.
Omori, H.; Maeda, Y.; Yoshioka, A., On regular Fr´chet Lie groups II. Composition rules of
e

<< . .

. 94
( : 97)



. . >>