<< Пред. стр.

стр. 35
(общее количество: 40)

ОГЛАВЛЕНИЕ

След. стр. >>

239. Halmos P. Selecta: Expository Writing.—Berlin etc.: Springer,
1983.—304 p.
240. Halmos P. Has Progress in Mathematics Slowed Down.—Amer.
Math. Monthly.—1990.—Vol. 97, No. 7.—P. 561–588.
241. Harte R. Invertibility and Singularity for Bounded Linear Opera-
tors.—New York and Basel: Dekker, 1988.—590 p.
242. Helmberg G. Introduction to Spectral Theory in Hilbert Space.—
Amsterdam etc.: North-Holland, 1969.—346 p.
243. Herv? M. Transformation de Fourier et Distributions. — Paris:
e
Presses Universitaires de France, 1986.—182 p.
244. Heuser H. Functional Analysis.—New York: Wiley, 1982.—408 p.
245. Heuser H. Funktionalanalysis.—Stuttgart: Teubner, 1986.—696 p.
246. Hewitt E. and Stromberg K. Real and Abstract Analysis—Berlin
etc.: Springer, 1975.—476 p.
247. Hochstadt H. Edward Helly, father of the Hahn–Banach theorem//
The Mathematical Intelligencer.—1980.—l. 2, No. 3.—P. 123–125.
248. Ho?man K. Fundamentals of Banach Algebras.—Curitaba: Uni-
versity do Parana, 1962.—116 p.
249. Hog-Nlend H. Bornologies and Functional Analysis.—Amsterdam
etc.: North-Holland, 1977.
250. Holmes R. B. Geometric Functional Analysis and Its Applications.
—Berlin etc.: Springer, 1975.—246 p.
251. H?rmander L. Notions of Convexity.—Boston etc.: Birkh?user,
o a
1994.—414 p.
252. Husain T. and Khaleelulla S. M. Barrelledness in Topological and
Ordered Vector Spaces.—Berlin etc.: Springer, 1978.—257 p.
253. Istratescu V. I. Inner Product Structures.—Dordrecht and Boston:
Reidel, 1987.—895 p.
254. James R. C. Some Interesting Banach Spaces//Rocky Mountain
J. Math.—1993.— Vol. 23, No. 2.—P. 911–937.
255. Jarchow H. Locally Convex Spaces.—Stuttgart: Teubner, 1981.—
548 p.
256. J?rgens K. Linear Integral Operators. —Boston etc.: Pitman,
o
1982.—379 p.
257. Kadison R. V. and Ringrose J. R. Fundamentals of the Theory of
Operator Algebras. Vol. 1, 2. — New York etc.: Academic Press,
1983–1986.
Литература
318

258. Kamthan P. K. and Gupta M. Sequence Spaces and Series.—New
York and Basel: Dekker, 1981.—368 p.
259. Kelly J. L. and Namioka I. Linear Topological Spaces.—Berlin etc.:
Springer, 1976.—256 p.
260. Kelly J. L. and Srinivasan T. P. Measure and Integral. Vol. 1.—
New York etc.: Springer, 1988.—150 p.
261. Kesavan S. Topics in Functional Analysis and Applications.—New
York etc.: Wiley, 1989.—267 p.
262. Khaleelulla S M. Counterexamples in Topological Vector Spaces.—
Berlin etc.: Springer, 1982.—179 p.
263. K?rner T. W. Fourier Analysis.—Cambridge: Cambridge Univer-
o
sity Press, 1988.—591 p.
264. K?the G. Topological Vector Spaces.—Berlin etc.: Springer, 1969–
o
1979.—Vol. 1, 2.
265. Kreyszig E. Introductory Functional Analysis with Applications.—
New York: Wiley, 1989.—688 p.
266. Kusraev A. G. Dominated Operators.—Dordrecht: Kluwer, 2000.
267. Lacey H. The Isometric Theory of Classical Banach Spaces.—Berlin
etc.: Springer, 1973.—243 p.
268. Lang S. Real Analysis.—Reading: Addison-Wesley, 1983.—533 p.
269. Larsen R. Banach Algebras, an Introduction.—New York: Dekker,
1973.—345 p.
270. Larsen R. Functional Analysis, an Introduction. —New York:
Dekker, 1973.—497 p.
271. Levy A. Basic Set Theory.—Berlin etc.: Springer, 1979.—351 p.
272. Lindenstrauss J. and Tzafriri L. Classical Banach Spaces.—Berlin
etc.: Springer, 1977. Vol. 1: Sequence Spaces.—1977.—190 p.
Vol. 2: Function Spaces.—1979.—243 p.
273. Linear and Complex Analysis Problem Book. 199 Research Prob-
lems.—Berlin etc.: 1984.—720 p.
274. Llavona J. G. Approximation of Continuously Di?erentiable Func-
tions. —Amsterdam etc.: North-Holland, 1986.—241 p.
275. Luecking D. H. and Rubel L. A. Complex Analysis. A Functional
Analysis Approach.—Berlin etc.: Springer, 1984.—176 p.
276. Luxemburg W. A. J. and Zaanen A. C. Riesz Spaces. I.—Amster-
dam etc.: North-Holland, 1971.—514 p.
277. Maddox I. J. Elements of Functional Analysis.—Cambridge: Cam-
bridge University Press, 1988.—242 p.
Литература 319

278. Malliavin P. Integration of Probabilit?s. Analyse de Fourier et
e
Analyse Spectrale.—Paris etc.: Masson, 1982.—200 p.
279. Marek I. and Zitn? K. Matrix Analysis for Applied Sciences. Vol. 1.
y
—Leipzig: Teubner, 1983.—196 p.
280. Mascioni V. Topics in the Theory of Complemented Subspaces in
Banach Spaces // Expositiones Math.—1989.—Vol. 7, No. 1.—P. 3–
47.
281. Maurin K. Analysis. II. Integration, Distributions, Holomorphic
Functions, Tensor and Harmonic Analysis.—Warszawa: Polish Sci-
enti?c Publishers, 1980.—829 p.
282. Meyer-Nieberg P. Banach Lattices.—Berlin etc.: Springer, 1991.—
395 p.
283. Michor P. W. Functors and Categories of Banach Spaces.—Berlin
etc.: Springer, 1978.—99 p.
284. Milman V. D. and Schechtman G. Asymptotic Theory of Finite
Dimensional Normed Spaces.—Berlin etc.: Springer, 1986.—156 p.
285. Miranda C. Istituzioni di Analisi Funzionale Lineare.—Bologna:
Pitagora Editrice.—Vol. 1: 1978.—596 p. Vol. 2: 1979.—748 p.
286. Misra O. P. and Lavoine J. L. Transform Analysis of Generalized
Functions.—Amsterdam etc.: North-Holland, 1986.—332 p.
287. Moore R. Computational Functional Analysis.—New York: Wiley,
1985.—156 p.
288. Narici L. and Beckenstein E. Topological Vector Spaces—New York:
Dekker, 1985.—408 p.
289. Naylor A. and Sell G. Linear Operator Theory in Engineering and
Science.—Berlin etc.: Springer, 1982.—624 p.
290. Oden J. T. Applied Functional Analysis. A First Course for Stu-
dents of Mechanics and Engineering Science.—Englewood Cli?s:
Prentice-Hall, 1979.—426 p.
291. Pedersen G. K. Analysis Now.—New York etc.: Springer, 1989.—
277 p.
292. Phelps R. Convex Functions, Monotone Operators and Di?eren-
tiability. —Berlin etc.: 1989.—115 p.
293. Pietsch A. Eigenvalues and S-Numbers.—Leipzig, Akademish Ver-
lag, 1987.—360 p.
294. Pisier G. Factorization of Linear Operators and Geometry of Ba-
nach Spaces.—Providence: Amer. Math. Soc., 1986.—154 p.
Литература
320

295. Radjavi H. and Rosenthal P. Invariant Subspaces.—Berlin etc.:
Springer, 1973.—219 p.
296. Richards J. Ian and Joun H. K. Theory of Distributions: a Non-
Technical Introduction. — Cambridge: Cambridge University Press,
1990.—147 p.
297. Rickart Ch. General Theory of Banach Algebras.—Princeton: Van
Nostrand, 1960.—394 p.
298. Rolewicz S. Metric Linear Spaces.—Dordrecht etc.: Reidel, 1984.
—459 p.
299. Rolewicz S. Analiza Funkcjonalua i Teoria Sterowania.—Warsza-
wa, P?nstwowe Wydawnictwo Naukowe, 1977.—393 p.
a
300. Roman St. Advanced Linear Algebra.— Berlin etc.: Springer,
1992.
301. Rudin W. Fourier Analysis on Groups.—New York: Interscience,
1962.—285 p.
302. Sakai S. C ? -Algebras and W ? -Algebras.—Berlin etc.: Springer,
1971.—256 p.
303. Samu?lid?s M. and Touzillier L. Analyse Fonctionelle. Cepadues
ee
?
Editions.—Toulouse, 1983.—289 p.
304. Sard A. Linear Approximation.— Providence: Amer. Math. Soc.,
1963.
305. Schaefer H. H. Banach Lattices and Positive Operators.—Berlin
etc.: Springer, 1974.—376 p.
306. Schechter M. Principles of Functional Analysis.—New York etc.:
Academic Press, 1971.
307. Schwartz L. Theorie des Distributions [in French].—Paris: Her-
mann, 1998.—xii+420 p.
308. Schwartz L. Analyse. Topologie G?n?rale et Analyse Fonction-
ee
nelle. —Paris: Hermann, 1986.—436 p.
309. Schwartz L. Hilbertian Analysis [in French].—Paris: Hermann,
1979.
310. Schwartz L. Geometry and Probability in Banach Spaces.—Berlin
etc.: Springer, 1981.—x+101 p.—(Lecture Notes in Math., 852.)
311. Schwarz H.-U. Banach Lattices and Operators.—Leipzig: Teubner,
1984.—208 p.
312. Seeger Al. Direct and inverse addition in convex analysis and
applications // J. Math. Anal. Appl.—1990.—Vol. 148, No. 2.—
P. 317–349.
Литература 321

313. Segal I. and Kunze R. Integrals and Operators. —Berlin etc.:
Springer.—1978.—371 p.
314. Semadeni Zb. Banach Spaces of Continuous Functions.—Warsza-
wa: Polish Scienti?c Publishers, 1971.—584 p.
315. Sinclair A. Automatic Continuity of Linear Operators. — Cam-
bridge: Cambridge University Press, 1976.—92 p.
316. Singer I. Bases in Banach Spaces. Vol. 1—Berlin etc.: Springer,
1970.—668 p.
317. Singer I. Bases in Banach Spaces. Vol. 2.—Berlin etc.: Springer,
1981.—880 p.
318. Singer I. Abstract Convex Analysis.—New York: John Wiley &
Sons, 1997.—xix+491 p.
319. Steen L. A. Highlights in the history of spectral theory // Amer.
Math. Monthly.—1973.—Vol. 80, No. 4.—P. 359—381.
320. Steen L. A. and Seebach J. A. Counterexamples in Topology.—
Berlin etc.: Springer, 1978.—244 p.
321. Stein E. M. Harmonic Analysis, Real-Variable Methods, Orthogo-
nality, and Oscillatory Integrals.—Princeton Princeton University
Press, 1993.
322. Stone M. Linear Transformations in Hilbert Space and Their Ap-
plication to Analysis.—New York: Amer. Math. Soc., 1932.—
622 p.
323. Sundaresan K. and Swaminathan Sz. Geometry and Nonlinear
Analysis in Banach Spaces.—Berlin etc.: 1985.—113 p.
324. Sunder V. S. An Invitation to von Neumann Algebras.—New York
etc.: Springer, 1987.—171 p.
325. Swartz Ch. An Introduction to Functional Analysis.—New York:
Dekker, 1992.—600 p.
326. Szankowski A. B(H) does not have the approximation property
// Acta Math.—1981.—Vol. 147, No. 1–2.—P. 89–108.
327. Takeuti G. and Zaring W. Introduction to Axiomatic Set Theory.
—New York etc.: Springer, 1982.—246 p.
328. Taylor A. E. and Lay D. C. Introduction to Functional Analysis.—
New York: Wiley, 1980.—467 p.
329. Taylor J. L. Measure Algebras.—Providence: Amer. Math. Soc.,
1973.—108 p.
330. Tiel J. van. Convex Analysis. An Introductory Theory.—Chiche-
ster: Wiley, 1984.—125 p.
Литература
322

331. Treves F. Locally Convex Spaces and Linear Partial Di?erential
Equations.—Berlin etc.: Springer, 1967.—120 p.
332. Waelbroeck L. Topological Vector Spaces and Algebras.—Berlin
etc.: Springer, 1971.
333. Wagon S. The Banach–Tarski Paradox.—Cambridge: Cambridge
University Press, 1985.—251 p.
334. Weidmann J. Linear Operators in Hilbert Spaces.—New York etc.:
Springer, 1980.—402 p.
335. Wells J. H. and Williams L. R. Embeddings and Extensions in
Analysis.—Berlin etc.: Springer, 1975.—107 p.
336. Wermer J. Banach Algebras and Several Convex Variables. —
Berlin etc.: Springer, 1976.—161 p.
337. Wilanski A. Functional Analysis.— New York: Blaisdell, 1964.
338. Wilanski A. Topology for Analysis.— New York: John Wiley, 1970.
339. Wilanski A. Modern Methods in Topological Vector Spaces.—New
York: McGraw-Hill, 1980.—298 p.
340. Wojtaszczyk P. Banach Spaces for Analysis.—Cambridge: Cam-
bridge University Press, 1991.—382 p.
341. Wong Yau-Chuen. Introductory Theory of Topological Vector Spa-
ces.—New York: Dekker, 1992.—440 p.
342. Yood B. Banach Algebras—An Introduction.—Ottawa: Carleton
University, 1988.—174 p.
343. Zaanen A. C. Riesz Spaces. II.—Amsterdam etc.: North-Holland,
1983.—702 p.
344. Zemanian A. H. Distribution Theory and Transform Analysis.—
New York: Dover, 1987.—371 p.
345. Ziemer W. P. Weakly Di?erentiable Functions. Sobolev Spaces
and Functions of Bounded Variation.—Berlin etc.: Springer, 1989.
346. Zimmer R. J. Essential Results of Functional Analysis.—Chicago
and London: The University of Chicago Press, 1990.—152 p.
347. Zuily C. Problems in Distributions and Partial Di?erential Equa-
tions. —Amsterdam etc.: North-Holland, 1988.—245 p.
Указатель обозначений



Ar , 11.1.6 K(Q), 10.9.1
A ? B, 1.1.1 K( ), 10.9.1
LA , 11.1.6
Bp , 5.1.1, 5.2.11
? Lp , 5.5.9 (4), 5.5.9 (6)
B p , 5.1.1 Lp (X), 5.5.9
BT , 5.1.3 LQ0 , 10.8.4 (3)
BX , 5.1.10, 5.2.11
L , 10.8.4 (4)
B(X), 5.6.4, Q0
B(E, F ), 5.5.9 (2) L? , 5.5.9 (5)
B(X, Y ), 5.1.10 (7) M ( ), 10.9.4 (2)
C(Q, F ), 4.6.8 N (a), 11.9.1
C (m) , 10.9.9 Np , 5.5.9 (6)
PH0 , 6.2.7
C? ( ), 10.10.2 (3)
D? , 10.11.13 P? , 8.2.10
F ?1 , 1.1.3 (1) PX1 ||X2 , 2.2.9 (4)
P1 ? P2 , 6.2.12
F (B), 1.3.5 (1)
R (a, ?), 11.2.1
Fp , 5.5.9 (6)
F |U , 1.1.3 (5) R (T, ?), 5.6.13
S(A), 11.9.1
F (U ), 1.1.3 (5)
F (a1 , · ), 1.1.3 (6) T , 7.6.2
T ? , 6.4.4
F ( · , a2 ), 1.1.3 (6)
F (· , ·), 1.1.3 (6) T , 5.1.10 (7)
U ? , 10.5.7
F (X, Y ), 8.3.6
U ? , 6.2.5
G, 10.11.2
U ? ( ), 3.1.1
G, 10.11.2 X|, 10.3.1
G ? F , 1.1.4 X , 5.1.10 (8), 10.2.11
H? , 6.1.10 (3) X , 5.1.10 (8)
H(K), 8.1.13 X? , 2.1.4 (2)
H (U ), 3.1.11 X+ , 3.2.5
?
IC , 8.2.10 X0 , 7.6.8
IU , 1.1.3 (3) X? , 8.2.10
X N , 2.1.4 (4)
J(q), 11.5.3
X # , 2.2.4
J(Q0 ), 11.5.2
J A, 11.4.1 XR , 3.7.1
K(E), 10.9.1 X , 2.1.4 (4)
Указатель обозначений
324

X = X1 ? X2 , 2.1.7 N? , 5.5.9 (5)
X ? iX, 8.4.8 P(X), 1.2.3 (4)
X1 ? X2 ? . . . ? XN , 2.1.4 (4) RT , 8.2.1
Ra h, 11.3.1
(X, ? ) , 10.2.11
S(RN ), 10.11.6
X/X0 , 2.1.4 (6)
S (RN ), 10.11.16
(X/X0 , pX/X0 ), 5.1.10 (5)
X - Y , 10.3.3 T(X), 9.1.2
Up , 5.2.2
X Y , 2.2.6
| Y , 10.3.1 UM , 5.2.4
B, 9.6.14 UX , 4.1.5, 5.2.4
? X , 7.6.8
C, 2.1.2 0
D, 8.1.3 Fu, 10.11.19
F, 2.1.2 M, 5.3.9
N, 1.2.16 M ? N, 5.3.1
Q, 7.4.11 M N, 5.3.1
R, 2.1.2 MX , 5.1.6
R· , 3.4.1 M? , 10.2.7
R+ , 3.1.2 (4) N ? T , 5.1.10 (3)
NT , 5.1.10 (3)
R, 3.8.1
R , 3.7.3 Ra , 11.8.7
R ?1 , 3.7.4 Cl(? ), 4.1.15, 9.1.4
T, 8.1.3 Im f , 5.5.9 (4)
Z, 8.5.1 Inv(A), 11.1.5
Z+ , 10.10.2 (2) Inv(X, Y ), 5.6.12
Ae , 11.1.2 B , 8.1.2 (4)
D(Q), 10.10.1 Lat(X), 2.1.5
D( ), 10.10.1 LCT (X), 10.2.3
D ( ), 10.10.4 M(A), 11.6.6
D F ( ), 10.10.8 Op(? ), 4.1.11, 9.1.4
D(m) (Q), 10.10.8 Re, 2.1.2
Re f , 5.5.9 (4)
D(m) ( ), 10.10.8
Sp(a), 11.2.1
D(m) ( ) , 10.10.8
SpA (a), 11.2.1
E( ), 10.10.2 (3)
Sp(T ), 5.6.13
E (RN ), 10.10.5 (9)
T1 , 9.3.2
E ? T , 2.2.8
T2 , 9.3.5
F, 10.11.4
T3 , 9.3.9
Fp , 5.5.9 (6)
T3 1 , 9.3.15
Fr(X, Y ), 8.5.1 2
T4 , 9.3.11
F(X), 1.3.6
T(X), 9.1.7
GA , 11.6.8
Tr ( ), 10.10.2
H (K), 8.1.14
VT(X), 10.1.5
K (X), 8.3.3
X(A), 11.6.4
K (X, Y ), 6.6.1
?, 10.9.4 (1)
L(X), 2.2.8
? (?1) , 10.10.5 (4)
L(X, Y ), 2.2.3
Lr (X, Y ), 3.2.6 (3) ?q , 10.9.4 (1)
µ? , 10.9.4 (3)
L? , 5.5.9 (5)
M( ), 10.9.3 µ+ , 10.8.13
N(µ), 10.8.11 µ? , 10.8.13
|µ|, 10.8.13, 10.9.4 (3)
Np (f ), 5.5.9 (4)
Указатель обозначений 325

µ , 10.9.5 c, 3.3.1 (2), 5.5.9 (3)
c (E, F), 5.5.9 (3)
µ , 10.9.4 (4)
µ1 ? µ2 , 10.9.4 (6) c0 , 5.5.9 (3)
µ1 ? µ2 , 10.9.4 (6) c0 (E), 5.5.9
µ ? f , 10.9.4 (7) c0 (E, F), 5.5.9 (3)
? ? u, 10.10.5 (4)
µ ? ?, 10.9.4 (7)
?(p), 3.5.2 (1)
?(U ), 10.5.1, 10.5.7
? ?1 (V ), 10.5.1 |?|(p), 3.7.8
?1 ?U , 4.1.13
?F (?F (U )), 10.5.5
?x (f ), 3.5.1
2? , 10.11.4
dp , 5.2.1
? , 8.2.9
dx, 10.9.9
?(T ), 5.6.13
e, 10.9.4 (1), 11.1.1
?(X, Y ), 10.3.5
f , 10.11.3
? (X, Y ), 10.4.4
f (a), 11.3.1
?a f , 10.9.4 (1)
{f < t}, 3.8.1
?M , 5.2.8
?? , 8.2.10 {f = t}, 3.8.1
{f ? t}, 3.8.1
abs pol , 10.5.7
f (T ), 8.2.1
cl U , 4.1.13
co(U ), 3.1.14 f , 10.10.5 (9)
codim X, 2.2.9 (5) f µ, 10.9.4 (3)
f ? , 10.9.4 (3)
coim T , 2.3.1

<< Пред. стр.

стр. 35
(общее количество: 40)

ОГЛАВЛЕНИЕ

След. стр. >>