<< . .

. 10
( : 11)

. . >>

e & London.
“The Security of quantum bit commitment schemes”, Pro- Canning, J., M. A. van Eijkelenborg, T. Ryan, M. Kris-
ceedings of Randomized Algorithms, Satellite Workshop of tensen and K. Lyytikainen, 2000, “Complex mode coupling
23rd International Symposium on Mathematical Foundations within air-silica structured optical ¬bers and applications”,
of Computer Science, Brno, Czech Republic, 13-15. Optics Commun. 185, 321-324
Brassard, G., N. L¨tkenhaus, T. Mor, and B.C. Sanders,
u Cirac, J.I., and N. Gisin, 1997, “Coherent eavesdropping
2000, “Limitations on Practical Quantum Cryptography”, strategies for the 4- state quantum cryptography protocol”,
Phys. Rev. Lett. 85, 1330-1333. Phys. Lett. A 229, 1-7.
Breguet, J., A. Muller and N. Gisin, 1994, “Quantum cryp- Clarke, M., R.B., A. Che¬‚es, S.M. Barnett and E. Riis,
tography with polarized photons in optical ¬bers: experimen- 2000, “Experimental Demonstration of Optimal Unambigu-
tal and practical limits”, J. Modern optics 41, 2405-2412. ous State Discrimination”, Phys. Rev. A 63, 040305.
Breguet, J. and N. Gisin, 1995, “New interferometer using Clauser, J.F., M.A. Horne, A. Shimony and R.A. Holt,
a 3x3 coupler and Faraday mirrors”, Optics Lett. 20, 1447- 1969, “Proposed experiment to test local hidden variable the-
1449. ories”, Phys. Rev. Lett. 23, 880-884.
Brendel, J., W. Dultz and W. Martienssen, 1995, “Geomet- Clauser, J.F. and A. Shimony, 1978, “Bell™s theorem: ex-
ric phase in 2-photon interference experiments”, Phys. rev. perimental tests and implications”, Rep. Prog. Phys. 41,
A 52, 2551-2556. 1881-1927.
Brendel, J., N. Gisin, W. Tittel, and H. Zbinden, 1999, Cova, S., A. Lacaita, M. Ghioni, and G. Ripamonti, 1989,
“Pulsed Energy-Time Entangled Twin-Photon Source for “High-accuracy picosecond characterization of gain-switched
Quantum Communication”, Phys. Rev. Lett. 82 (12), 2594- laser diodes”, Optics Letters 14, 1341-1343.
2597. Cova, S., M. Ghioni, A. Lacaita, C. Samori, and F. Zappa,
Briegel, H.-J., Dur W., J.I. Cirac, and P. Zoller, 1998, 1996, “Avalanche photodiodes and quenching circuits for
“Quantum Repeaters: The Role of Imperfect Local Opera- single-photon detection”, Applied Optics 35(129), 1956-1976.
tions in Quantum Communication”, Phys. Rev. Lett. 81, Csisz´r, I. and K¨rner, J., 1978, “Broadcast channels with
a o
5932-5935. con¬dential messages”, IEEE Transactions on Information
Brouri, R., A. Beveratios, J.-P. Poizat, P. Grangier, 2000, Theory, Vol. IT-24, 339-348.
“Photon antibunching in the ¬‚uorescence of individual colored De Martini, F., V. Mussi and F. Bovino, 2000,
centers in diamond”, Opt. Lett. 25, 1294-1296. “Schroedinger cat states and optimum universal Quantum
Brown, R.G.W. and M. Daniels, 1989, “Characterization cloning by entangled parametric ampli¬cation”, Optics Com-
of silicon avalanche photodiodes for photon correlation mea- mun. 179, 581-589.
surements. 3: Sub-Geiger operation”, Applied Optics 28, Desurvire, E., 1994, “The golden age of optical ¬ber am-
4616-4621. pli¬ers”, Phys. Today, Jan. 94, 20-27.
Brown, R.G.W., K. D. Ridley, and J. G. Rarity, 1986, Deutsch, D., “Quantum theory, the Church-Turing princi-
“Characterization of silicon avalanche photodiodes for pho- ple and the universal quantum computer”, 1985, Proc. Royal
ton correlation measurements. 1: Passive quenching”, Ap- Soc. London, Ser. A 400, 97-105.
plied Optics 25, 4122-4126.

Deutsch, D., A. Ekert, R. Jozsa, C. Macchiavello, S. G´rard, J.-M., B. Sermage, B. Gayral, B. Legrand, E.
Popescu, and A. Sanpera, 1996, “Quantum privacy ampli- Costard, and V. Thierry-Mieg, 1998, “Enhanced Spontaneous
¬cation and the security of quantum cryptography over noisy Emission by Quantum Boxes in a Monolithic Optical Micro-
channels”, Phys. Rev. Lett. 77, 2818-2821; Erratum-ibid. cavity”, Phys. Rev. Lett., 81, 1110-1113.
80, (1998), 2022. G´rard, J.-M., and B. Gayral, 1999, “Strong Purcell E¬ect
Dieks, D., 1982, “Communication by EPR devices”, Phys. for InAs Qantum Boxes in Three-Dimensional Solid-State Mi-
Lett. A 92, 271-272. crocavities”, J. Lightwave Technology 17, 2089-2095.
Di¬e, W. and Hellman M.E., 1976, “New directions in Gilbert, G., and M. Hamrick, 2000, “Practical Quan-
cryptography”, IEEE Trans. on Information Theory IT-22, tum Cryptography: A Comprehensive Analysis (Part One)”,
pp 644-654. MITRE Technical Report (MITRE, McLean USA), quant-
Dur, W., H.-J. Briegel, J.I. Cirac, and P. Zoller, 1999, ph/0009027.
“Quantum repeaters based on entanglement puri¬cation”, Gisin, N., 1998, “Quantum cloning without signaling”,
Phys. Rev. A 59, 169-181 (see also ibid 60, 725-725). Phys. Lett. A 242, 1-3.
Dusek, M., M. Jahma, and N. L¨tkenhaus, 2000, “Unam-
u Gisin, N. et al., 1995, “De¬nition of Polarization Mode Dis-
biguous state discrimination in quantum cryptography with persion and First Results of the COST 241 Round-Robin Mea-
weak coherent states”, Phys. Rev. A 62, 022306. surements, with the members of the COST 241 group”, JEOS
Einstein, A., B. Podolsky, and N. Rosen, 1935, “Can Pure & Applied Optics 4, 511-522.
quantum-mechanical description of physical reality be con- Gisin, N. and S. Massar, 1997, “Optimal quantum cloning
sidered complete?”, Phys. Rev. 47, 777-780. machines”, Phys. Rev. Lett. 79, 2153-2156.
Ekert, A.K., 1991, “Quantum cryptography based on Bell™s Gisin, B. and N. Gisin, 1999, “A local hidden variable
theorem”, Phys. Rev. Lett. 67, 661-663. model of quantum correlation exploiting the detection loop-
Ekert, A.K., J.G. Rarity, P.R. Tapster, and G.M. Palma, hole”, Phys. Lett. A 260, 323-327.
1992, “Practical quantum cryptography based on two-photon Gisin, N., and S. Wolf, 1999, “Quantum cryptography on
interferometry”, Phys. Rev. Lett. 69, 1293-1296. noisy channels: quantum versus classical key-agreement pro-
Ekert, A.K., B. Huttner, 1994, “Eavesdropping Techniques tocols”, Phys. Rev. Lett. 83, 4200-4203.
in Quantum Cryptosystems”, J. Modern Optics 41, 2455- Gisin, N., and H. Zbinden, 1999, “Bell inequality and the
2466. locality loophole: Active versus passive switches”, Phys. Lett.
Ekert, A.K., 2000, “Coded secrets cracked open”, Physics A 264, 103-107.
World 13, 39-40. Gisin, N., and S. Wolf, 2000a, “Linking Classical and Quan-
Elamari, A., H. Zbinden, B. Perny and Ch. Zimmer, 1998, tum Key Agreement: Is There “Bound Information”?, Ad-
“Statistical prediction and experimental veri¬cation of con- vances in cryptology - Proceedings of Crypto 2000, Lecture
catenations of ¬bre optic components with polarization de- Notes in Computer Science, Vol. 1880, 482-500.
pendent loss”, J. Lightwave Techn. 16, 332-339. Gisin, N., R. Renner and S. Wolf, 2000b, “Bound informa-
Enzer, D., P. Hadley, R. Hughes, G. Peterson, and P. tion : the classical analog to bound quantum entanglement,
Kwiat, 2001, private communication. Proceedingsof the Third European Congress of Mathematics,
Felix, S., A. Stefanov, H. Zbinden and N. Gisin, 2001, Barcelona, July 2000.
“Faint laser quantum key distribution: Eavesdropping ex- Goldenberg, L., and L. Vaidman, 1995, “Quantum Cryp-
ploiting multiphoton pulses”, quant-ph/0102062. tography Based on Orthogonal States”, Phys. Rev. Lett. 75,
Fleury, L., J.-M. Segura, G. Zumofen, B. Hecht, and 1239-1243.
U.P. Wild, 2000, “Nonclassical Photon Statistics in Single- Gorman, P.M., P.R. Tapster and J.G. Rarity, 2000, “Secure
Molecule Fluorescence at Room Temperature”, Phys. Rev. Free-space Key Exchange Over a 1.2 km Range Using Quan-
Lett. 84, 1148-1151. tum Cryptography” (DERA Malvern, United Kingdom).
Franson J.D., 1989, “Bell Inequality for Position and Haecker, W., O. Groezinger, and M.H. Pilkuhn, 1971, “In-
Time”, Phys. Rev. Lett. 62, 2205-2208. frared photon counting by Ge avalanche diodes”, Appl. Phys.
Franson, J.D., 1992, “Nonlocal cancellation of dispersion”, Lett. 19, 113-115.
Phys. Rev. A 45, 3126-3132. Hall, M.J.W., 1995, “Information excusion principle for
Franson, J.D., and B.C. Jacobs, 1995, “Operational system complementary observables”, Phys. Rev. Lett. 74, 3307-
for Quantum cryptography”, Elect. Lett. 31, 232-234. 3310.
Freedmann, S.J. and J.F. Clauser, 1972, “Experimental Hariharan, P., M. Roy, P.A. Robinson and O™Byrne J.W.,
test of local hidden variable theories”, Phys. rev. Lett. 28, 1993, “The geometric phase observation at the single photon
938-941. level”, J. Modern optics 40, 871-877.
Fry, E.S. and R.C. Thompson, 1976, “Experimental test of Hart, A.C., R.G. Hu¬ and K.L. Walker, 1994, “Method of
local hidden variable theories”, Phys. rev. Lett. 37, 465-468. making a ¬ber having low polarization mode dispersion due
Fuchs, C.A., and A. Peres, 1996, “Quantum State Distur- to a permanent spin”, U.S. Patent 5,298,047.
bance vs. Information Gain: Uncertainty Relations for Quan- Hildebrand, E., 2001, Ph. D. thesis (Johann-Wolfgang
tum Information”, Phys. Rev. A 53, 2038-2045. Goethe-Universit¨t, Frankfurt).
Fuchs, C.A., N. Gisin, R.B. Gri¬ths, C.-S. Niu, and A. Hillery, M., V. Buzek, and A. Berthiaume, 1999, “Quantum
Peres, 1997, “Optimal Eavesdropping in Quantum Cryptog- secret sharing”, Phys. Rev. A 59, 1829-1834.
raphy. I”, Phys. Rev. A 56, 1163-172. Hiskett, P. A., G. S. Buller, A. Y. Loudon, J. M. Smith, I.
Gontijo, A. C. Walker, P. D. Townsend, and M. J. Robertson,

2000, “Performance and Design of InGaAs/InP Photodiodes Kimble, H. J., M. Dagenais, and L. Mandel, 1977, “Photon
for Single-Photon Counting at 1.55 µm”, Appl. Opt. 39, antibunching in resonance ¬‚uorescence”, Phys. Rev. Lett.
6818-6829. 39, 691-694.
Hong, C.K. and L. Mandel, 1985, “Theory of parametric Kitson, S.C., P. Jonsson, J.G. Rarity, and P.R. Tapster,
frequency down conversion of light”, Phys. Rev. A 31, 2409- 1998, “Intensity ¬‚uctuation spectroscopy of small numbers of
2418. dye molecules in a microcavity”, Phys. Rev. A 58, 620-6627.
Hong, C.K. and L. Mandel, 1986, “Experimental realiza- Kolmogorow, A.N., 1956, “Foundations of the theory of
tion of a localized one-photon state”, Phys. Rev. Lett. 56, probabilities”, Chelsa Pub., New-York.
58-60. Kurtsiefer, Ch., S. Mayer, P. Zarda, and H. Weinfurter,
Horodecki, M., R. Horodecki and P. Horodecki, 1996, “Sep- 2000, “Stable Solid-State Source of Single Photons”, Phys.
arability of Mixed States: Necessary and Su¬cient Condi- Rev. Lett., 85, 290-293.
tions”, Phys. Lett. A 223, 1-8. Kurtsiefer, Ch., P. Zarda, S. Mayer, and H. Weinfurter,
Hughes, R., G.G. Luther, G.L. Morgan and C. Simmons, 2001, “The breakdown ¬‚ash of Silicon Avalanche Photodiodes
1996, “Quantum Cryptography over Underground Optical “ backdoor for eavesdropper attacks?”, quant-ph/0104103.
Fibers”, Lecture Notes in Computer Science 1109, 329-342. Kwiat, P.G., A.M. Steinberg, R.Y. Chiao, P.H. Eberhard,
Hughes, R., W. Buttler, P. Kwiat, S. Lamoreaux, G. Mor- M.D. Petro¬, 1993, “High-e¬ciency single-photon detectors”,
gan, J. Nordhold, G. Peterson, 2000a, “Free-space quantum Phys. Rev.A, 48, R867-R870.
key distribution in daylight”, J. Modern Opt. 47, 549-562. Kwiat, P.G., E. Waks, A.G. White, I. Appelbaum, and P.H.
Hughes, R., G. Morgan, C. Peterson, 2000b, “Quantum key Eberhard, 1999, “Ultrabright source of polarization-entangled
distribution over a 48km optical ¬bre network”, J. Modern photons”, Phys. Rev. A, 60, R773-776.
Opt. 47, 533-547. Lacaita, A., P.A. Francese, F. Zappa, and S. Cova, 1994,
Huttner, B., N. Imoto, N. Gisin, and T. Mor, 1995, “Quan- “Single-photon detection beyond 1 µm: performance of com-
tum Cryptography with Coherent States”, Phys. rev. A 51, ercially available germanium photodiodes”, Applied Optics
1863-1869. 33, 6902-6918.
Huttner, B., J.D. Gautier, A. Muller H. Zbinden, and N. Lacaita, A., F. Zappa, S. Cova, and P. Lovati, 1996,
Gisin, 1996a, “Unambiguous quantum measurement of non- “Single-photon detection beyond 1 µm: performance of com-
orthogonal states”, Phys. Rev. A 54, 3783-3789. mercially available InGaAs/InP detectors. Appl. Optics
Huttner, B., N. Imoto, and S.M. Barnett, 1996b, “Short 35(16), 2986-2996.
distance applications of Quantum cryptography”, J. Nonlin- Larchuk, T.S., M.V. Teich and B.E.A. Saleh, 1995, “Non-
ear Opt. Phys. & Materials, 5, 823-832. local cancellation of dispersive broadening in Mach-Zehnder
Imamoglu, A., and Y. Yamamoto, 1994, “Turnstile Device interferometers”, Phys. Rev. A 52, 4145-4154.
for Heralded Single Photons : Coulomb Blockade of Electron Levine, B.F., C.G. Bethea, and J.C. Campbell, 1985,
and Hole Tunneling in Quantum Con¬ned p-i-n Heterojunc- “Room-temperature 1.3-µm optical time domain re¬‚ectome-
tions”, Phys. Rev. Lett. 72, 210-213. ter using a photon counting InGaAs/InP avalanche detector”,
Inamori, H., L. Rallan, and V. Vedral, 2000, “Security of Appl. Phys. Lettt. 45(4), 333-335.
EPR-based Quantum Cryptography against Incoherent Sym- Li, M.J., and D.A. Nolan, 1998, “Fiber spin-pro¬le designs
metric Attacks”, quant-ph/0103058. for producing ¬bers with low PMD”, Optics Lett. 23, 1659-
Ingerson, T.E., R.J. Kearney, and R.L. Coulter, 1983, 1661.
“Photon counting with photodiodes”, Applied Optics 22, Lo, H.-K., and H.F. Chau, 1998, “Why Quantum Bit Com-
2013-2018. mitment And Ideal Quantum Coin Tossing Are Impossible”,
Ivanovic, I.D., 1987, “How to di¬erentiate between non- Physica D 120, 177-187.
orthogonal states”, Phys. Lett. A 123, 257-259. Lo, H.-K. and H.F. Chau, 1999, “Unconditional security
Jacobs, B., and J. Franson, 1996, “Quantum cryptography of quantum key distribution over arbitrary long distances”
in free space”, Optics Letters 21, 1854-1856. Science 283, 2050-2056; also quant-ph/9803006.
Jennewein, T., U. Achleitner, G. Weihs, H. Weinfurter and L¨tkenhaus, N., 1996, “Security against eavesdropping in
A. Zeilinger, 2000a “A fast and compact quantum random Quantum cryptography”, Phys. Rev. A, 54, 97-111.
number generator”, Rev. Sci. Inst. 71, 1675-1680 and L¨tkenhaus, N., 2000, “Security against individual attacks
quantph/9912118. for realistic quantum key distribution”, Phys. Rev. A, 61,
Jennewein, T., C. Simon, G. Weihs, H. Weinfurter, and 052304.
A. Zeilinger, 2000b “Quantum Cryptography with Entangled Marand, C., and P.D. Townsend, 1995, “Quantum key dis-
Photons”, Phys. Rev. Lett. 84, 4729-4732 tribution over distances as long as 30 km”, Optics Letters 20,
Karlsson, A., M. Bourennane, G. Ribordy, H. Zbinden, J. 1695-1697.
Brendel, J. Rarity, and P. Tapster, 1999, “A single-photon Martinelli, M., 1992, “Time reversal for the polarization
counter for long-haul telecom”, IEEE Circuits & Devices 15, state in optical systems”, J. Modern Opt. 39, 451-455.
34-40. Martinelli, M., 1989, “A universal compensator for po-
Kempe, J., Simon Ch., G. Weihs and A. Zeilinger, 2000, larization changes induced by birefringence on a retracing
“Optimal photon cloning”, Phys. Rev. A 62, 032302. beam”, Opt. Commun. 72, 341-344.
Kim, J., O. Benson, H. Kan, and Y. Yamamoto, 1999, “A Maurer, U.M., 1993, “Secret key agreement by public dis-
single-photon turnstile device”, Nature, 397, 500-503. cussion from common information”, IEEE Transacions on In-
formation Theory 39, 733-742.

Maurer, U.M., and S. Wolf, 1999, “Unconditionnally secure Penrose, R., 1994, “Shadows of the mind”, Oxford Univer-
key agreement and intrinsic information”, IEEE Transactions sity Press.
on Information Theory, 45, 499-514. Peres, A., 1988, “How to di¬erentiate between two non-
Mayers, D., 1996a, “The Trouble with Quantum Bit Com- orthogonal states”, Phys. Lett. A 128, 19.
mitment”, quant-ph/9603015. Peres, A., 1996, “Separability criteria for density matrices”,
Mayers, D., 1996b, “Quantum key distribution and string Phys. Rev. Lett. 76, 1413-1415.
oblivious transfer in noisy channels”, Advances in Cryptology Peres, A., 1997, Quantum Theory: Concepts and Methods,
” Proceedings of Crypto ™96, Springer - Verlag, 343-357. Kluwer, Dordrecht.
Mayers, D., 1997, “Unconditionally secure Q bit commit- Phoenix, S.J.D., S.M. Barnett, P.D. Townsend, and K.J.
ment is impossible”, Phys. Rev. Lett. 78, 3414-3417. Blow, 1995, “Multi-user Quantum cryptography on optical
Mayers, D., 1998, “Unconditional security in quantum networks”, J. Modern optics, 6, 1155-1163.
cryptography”, Journal for the Association of Computing Ma- Piron, C., 1990, “M´canique quantique”, Presses Polytech-
chinery (to be published); also in quant-ph/9802025. niques et Universitaires Romandes, Lausanne, Switzerland,
Mayers, D., and A. Yao, 1998, “Quantum Cryptography pp 66-67.
with Imperfect Apparatus”, Proceedings of the 39th IEEE Pitowsky, I., 1989, “Quantum probability, quantum logic”,
Conference on Foundations of Computer Science. Lecture Notes in Physics 321, Heidelberg, Springer.
Mazurenko, Y., R. Giust, and J.P. Goedgebuer, 1997, Rarity, J. G. and P.R. Tapster, 1988, “Nonclassical ef-
“Spectral coding for secure optical communications using re- fects in parametric downconversion”, in “Photons & Quan-
fractive index dispersion”, Optics Commun. 133, 87-92. tum Fluctuations”, eds Pike & Walther, Adam Hilger.
M´rolla, J-M., Y. Mazurenko, J.P. Goedgebuer, and W.T.
e Rarity, J. G., P.C.M. Owens and P.R. Tapster, 1994,
Rhodes, 1999, “Single- photon interference in sidebands of “Quantum random-number generation and key sharing”,
phase-modulated light for Quantum cryptography”, Phys. Journal of Modern Optics 41, 2435-2444.
Rev. Lett, 82, 1656-1659. Rarity, J. G., T. E. Wall, K. D. Ridley, P. C. M. Owens,
Michler, P., A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. and P. R. Tapster, 2000, “Single-Photon Counting for the
Petro¬, L. Zhang, E. Hu, and A. Imamoglu, 2000, “A quan- 1300-1600-nm Range by Use of Peltier-Cooled and Passively
tum dot single photon turnstile device”, Science (in press). Quenched InGaAs Avalanche Photodiodes”, Appl. Opt. 39,
Milonni, P.W. and Hardies, M.L., 1982, “Photons cannot 6746-6753.
always be replicated”, Phys. Lett. A 92, 321-322. Ribordy, G., J. Brendel, J.D. Gautier, N. Gisin, and H.
Molotkov, S.N., 1998, “Quantum crypto using photon fre- Zbinden, 2001, “Long distance entanglement based quantum
quency states (example of a possible relaization)”, J. Exp. & key distribution”, Phys. Rev. A 63, 012309.
Theor. Physics 87, 288-293. Ribordy, G., J.-D. Gautier, N. Gisin, O. Guinnard, H.
Muller, A., J. Breguet and N. Gisin, 1993, “Experimental Zbinden, 2000, “Fast and user-friendly quantum key distri-
demonstration of quantum cryptography using polarized pho- bution”, J. Modern Opt., 47, 517-531
tons in optical ¬ber over more than 1 km”, Europhysics Lett. Ribordy, G., J.D. Gautier, H. Zbinden and N. Gisin, 1998,
23, 383-388. “Performance of InGaAsInP avalanche photodiodes as gated-
Muller, A., H. Zbinden and N. Gisin, 1995, “Underwater mode photon counters”, Applied Optics 37, 2272-2277.
quantum coding”, Nature 378, 449-449. Rivest, R.L., Shamir A. and Adleman L.M., 1978, “A
Muller, A., H. Zbinden and N. Gisin, 1996, “Quantum cryp- Method of Obtaining Digital Signatures and Public-Key
tography over 23 km in installed under-lake telecom ¬bre”, Cryptosystems” Communications of the ACM 21, 120-126.
Europhysics Lett. 33, 335-339 Santori, C., M. Pelton, G. Solomon, Y. Dale, and Y. Ya-
Muller, A., T. Herzog, B. Huttner, W. Tittel, H. Zbinden, mamoto, 2000, “Triggered single photons from a quantum
and N. Gisin, 1997, “ ˜Plug and play™ systems for quantum dot” (Stanford University, Palo Alto, California).
cryptography”, Applied Phys. Lett. 70, 793-795. Shannon, C.E., 1949, “Communication theory of secrecy
Naik, D., C. Peterson, A. White, A. Berglund, and systems”, Bell System Technical Journal 28, 656-715.
P. Kwiat, 2000, “Entangled State Quantum Cryptography: Shih, Y.H. and C.O. Alley, 1988, “New type of Einstein-
Eavesdropping on the Ekert Protocol”, Phys. Rev. Lett. 84, Podolsky-Rosen-Bohm Experiment Using Pairs of Light
4733-4736 Quanta Produced by Optical Parametric Down Conversion”,
Neumann, E.-G., 1988, “Single-mode ¬bers: fundamen- Phys. Rev. Lett. 61, 2921-2924.
tals”, Springer series in Optical Sciences, vol. 57. Shor, P.W., 1994, “Algoritms for quantum computation:
Niu, C. S. and R. B. Gri¬ths, 1999, “Two-qubit copying discrete logarithms and factoring”, Proceedings of the 35th
machine for economical quantum eavesdropping” Phys. Rev. Symposium on Foundations of Computer Science, Los Alami-
A 60, 2764-2776. tos, edited by Sha¬ Goldwasser (IEEE Computer Society
Nogues, G., A. Rauschenbeutel, S. Osnaghi, M. Brune, Press), 124-134.
J.M. Raimond and S. Haroche, 1999, “Seeing a single pho- Shor, P.W., and J. Preskill, 2000, “Simple proof of security
ton without destroying it”, Nature 400, 239-242. of the BB84 Quantum key distribution protocol”, Phys. Rev.
Owens, P.C.M., J.G. Rarity, P.R. Tapster, D. Knight, Lett. 85, 441-444.
and P.D. Townsend, 1994, “Photon counting with passively Simon, C., G. Weihs, and A. Zeilinger, 1999, “Quantum
quenched germanium avalanche”, Applied Optics 33, 6895- Cloning and Signaling”, Acta Phys. Slov. 49, 755-760.
6901. Simon, C., G. Weihs, A. Zeilinger, 2000, “Optimal Quan-
tum Cloning via Stimulated Emission”, Phys. Rev. Lett. 84,

2993-2996. over installed ¬bre using WDM”, Elect. Lett. 33, 188-190.
Singh, S., 1999, “The code book: The Science of Secrecy Townsend, P., 1997b, “Quantum cryptography on mul-
from Ancient Egypt to Quantum Cryptography” (Fourh Es- tiuser optical ¬ber networks”, Nature 385, 47-49.
tate, London), see Ekert 2000 for a review. Townsend, P., 1998a, “Experimental Investigation of the
Snyder, A.W., 1983, “Optical waveguide theory”, Chap- Performance Limits for First Telecommunications-Window
man & Hall, London. Quantum Cryptography Systems”, IEEE Photonics Tech.
Spinelli, A., L.M. Davis, H. Dauted, 1996, “Actively Lett. 10, 1048-1050.
quenched single-photon avalanche diode for high repetition Townsend, P., 1998b, “Quantum Cryptography on Optical
rate time-gated photon counting”, Rev. Sci. Instrum 67, Fiber Networks”, Opt. Fiber Tech. 4, 345-370.
55-61. Townsend, P., J.G. Rarity, and P.R. Tapster, 1993a, “Single
Stallings, W., 1999, “Cryptography and network security: photon interference in a 10 km long optical ¬ber interferom-
principles and practices”, (Prentice Hall, Upper Saddle River, eter”, Electron. Lett. 29, 634-639.
New Jersey, United States). Townsend, P., J. Rarity, and P. Tapster, 1993b, “Enhanced
Stefanov, A., O. Guinnard, L. Guinnard, H. Zbinden and N. single photon fringe visibility in a 10km-long prototype quan-
Gisin, 2000, “Optical Quantum Random Number Generator”, tum cryptography channel”, Electron. Lett. 29, 1291-1293.
J. Modern Optics 47, 595-598. Townsend, P.D., S.J.D. Phoenix, K.J. Blow, and S.M. Bar-
Steinberg, A.M., P. Kwiat and R.Y. Chiao, 1992a, “Dis- nett, 1994, “Design of QC systems for passive optical net-
persion cancellation and high-resolution time measurements works”, Elect. Lett, 30, pp. 1875-1876.
in a fourth-order optical interferometer”, Phys. Rev. A 45, Vernam, G., 1926, “Cipher printing telegraph systems for
6659-6665. secret wire and radio telegraphic communications”, J. Am.
Steinberg, A.M., P. Kwiat and R.Y. Chiao, 1992b, “Dis- Institute of Electrical Engineers Vol. XLV, 109-115.
persion Cancellation in a Measurement of the Single-Photon Vinegoni, C., M. Wegmuller and N. Gisin, 2000a, “Determi-
Propagation Velocity in Glass”, Phys. Rev. Lett. 68, 2421- nation of nonlinear coe¬cient n2/Ae¬ using self-aligned inter-
2424. ferometer and Faraday mirror”, Electron. Lett. 36, 886-888.
Stucki, D., G. Ribordy, A. Stefanov, H. Zbinden, J. Rarity Vinegoni, C., M. Wegmuller, B. Huttner and N. Gisin,
and T. Wall, 2001, “Photon counting for quantum key dis- 2000b, “Measurement of nonlinear polarization rotation in a
tribution with Peltier cooled InGaAs/InP APD™s”, preprint, highly birefringent optical ¬ber using a Faraday mirror”, J.
University of Geneva, Geneva. of Optics A 2, 314-318.
Sun, P.C., Y. Mazurenko, and Y. Fainman, 1995, “Long- Walls, D.F. and G.J. Milburn, 1995, “Quantum optics”,
distance frequency-division interferometer for communication Springer-verlag.
and quantum cryptography”, Opt. Lett. 20, 1062-1063. Weihs, G., T. Jennewein, C. Simon, H. Weinfurter, and A.
Tanzilli, S., H. De Riedmatten, W. Tittel, H. Zbinden, P. Zeilinger, 1998, ”Violation of Bell™s Inequality under Strict
Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, 2001, Einstein Locality Conditions”, Phys. Rev. Lett. 81, 5039-
“Highly e¬cient photon-pair source using a Periodically Poled 5043.
Lithium Niobate waveguide”, Electr. Lett. 37, 26-28. Wiesner, S., 1983, “Conjugate coding”, Sigact news, 15:1,
Tapster, P.R., J.G. Rarity, and P.C.M. Owens, 1994, “Vio- 78-88.
lation of Bell™s Inequality over 4 km of Optical Fiber”, Phys. Wigner, E.P., 1961, “The probability of the existence of a
Rev. Lett. 73, 1923-1926. self-reproducing unit”, in “The logic of personal knowledge”
Thomas, G.A., B.I. Shraiman, P.F. Glodis and M.J. Essays presented to Michael Polanyi in his Seventieth birth-
Stephen, 2000, “Towards the clarity limit in optical ¬ber”, day, 11 March 1961 Routledge & Kegan Paul, London, pp
Nature 404, 262-264. 231-238.
Tittel, W., J. Brendel, H. Zbinden, and N. Gisin, 1998, Wooters, W. K. and Zurek, W.H., 1982, “A single quanta
“Violation of Bell inequalities by photons more than 10 km cannot be cloned”, Nature 299, 802-803.
apart”, Phys. Rev. Lett. 81, 3563-3566. Yuen, H.P., 1997, “Quantum ampli¬ers, Quantum duplica-
Tittel, W., J. Brendel, H. Zbinden and N. Gisin, 1999, tors and Quantum cryptography”, Quantum & Semiclassical
“Long-distance Bell-type tests using energy-time entangled optics, 8, p. 939.
photons”, Phys. Rev. A 59, 4150-4163. Zappa, F., A. Lacaita, S. Cova, and P. Webb, 1994,
Tittel, W., J. Brendel, H. Zbinden, and N. Gisin, “Nanosecond single-photon timing with InGaAs/InP photo-
2000, “Quantum Cryptography Using Entangled Photons in diodes”, Opt. Lett. 19, 846-848.
Energy-Time Bell States”, Phys. Rev. Lett. 84, 4737-4740 Zbinden, H., J.-D. Gautier, N. Gisin, B. Huttner, A.
Tittel, W., H. Zbinden, and N. Gisin, 2001, “Experimental Muller, and W. Tittel, 1997, “Interferometry with Faraday
demonstration of quantum secret sharing”, Phys. Rev. A 63, mirrors for quantum cryptography”, Electron. Lett. 33, 586-
042301. 588.
Tomita, A. and R. Y. Chiao, 1986, “Observation of Berry™s Zeilinger, A., 1999, “Experiment and the foundations of
topological phase by use of an optical ¬ber”, Phys. Rev. Lett. quantum physics”, Rev. Mod. Phys. 71, S288-S297.
57, 937-940. Zissis, G., and A. Larocca, 1978, “Optical Radiators and
Townsend, P., 1994, “Secure key distribution system based Sources”, Handbook of Optics, edited by W. G. Driscoll
on Quantum cryptography”, Elect. Lett. 30, 809-811. (McGraw-Hill, New York), Sec. 3.

Townsend, P., 1997a, “Simultaneous Quantum crypto- Zukowski, M., A. Zeilinger, M.A. Horne and A. Ekert, 1993,
graphic key distribution and conventional data transmission “ ˜Event-ready-detectors™ Bell experiment via entanglement

swapping”, Phys. Rev. Lett. 71, 4287-4290. FIGURES

Zukowski, M., A. Zeilinger, M. Horne, and H. Weinfurter,
1998, “Quest for GHZ states”, Acta Phys. Pol. A 93, 187-

FIG. 1. Implementation of the BB84 protocol. The four
states lie on the equator of the Poincar´ sphere.

FIG. 2. Poincar´ sphere with a representation of six states
that can be used to implement the generalization of the BB84

FIG. 3. EPR protocol, with the source and a Poincar´ rep-
resentation of the four possible states measured independently
by Alice and Bob.


Attenuation [dB/km]

OH absorption

UV absorption
0.6 1.2
1.0 1.4 1.6
Wavelength [mm]

FIG. 6. Transmission losses versus wavelength in optical
¬bers. Electronic transitions in SiO2 lead to absorption at
lower wavelengths, excitation of vibrational modes to losses
at higher wavelength. Superposed is the absorption due to
Rayleigh backscattering and to transitions in OH groups.
Modern telecommunication is based on wavelength around
1.3 µm (second telecommunication window) and around 1.5
µm (third telecommunication window).
FIG. 4. Illustration of protocols exploiting EPR quantum
systems. To implement the BB84 quantum cryptographic
protocol, Alice and Bob use the same bases to prepare and
measure their particles. A representation of their states on wavelength [nm]
the Poincar´ sphere is shown. A similar setup, but with Bob™s
1280 1295 1340
bases rotated by 45—¦ , can be used to test the violation of Bell
inequality. Finally, in the Ekert protocol, Alice and Bob may
use the violation of Bell inequality to test for eavesdropping.
400 idler ω0
group delay [ps]



ωS1 ωi1
2.34 2.315 2.29 2.265 2.24
frequency [1014 Hz]

FIG. 7. Illustration of cancellation of chromatic dispersion
e¬ects in the ¬bers connecting an entangled-particle source
and two detectors. The ¬gure shows di¬erential group delay
(DGD) curves for two slightly di¬erent, approximately 10 km
long ¬bers. Using frequency correlated photons with central
frequency ω0 “ determined by the properties of the ¬bers “,
the di¬erence of the propagation times t2 ’ t1 between signal

<< . .

. 10
( : 11)

. . >>