<< . .

. 7
( : 7)



can be de¬ned

min F (|ψ , E (|ψ ψ|)) .
Fmin (E)


where the quantum channel is simulated via the quantum operation E, and the minimization is considered as
the worst case of a quantum signal. Another interesting de¬nition is
2
¯ pj F ρ j , E ρ j
F ,
j

named the ensemble average ¬delity. Finally it is important to quantify, how much entanglement between R
and Q, sent through a quantum channel E (a trace preserving operation), is preserved. This can be done by
entanglement ¬delity
2
|tr (ρEi)|2 ,
F (ρ, E) F (RQ, R Q ) = RQ| [(IR — E) (|RQ RQ|)] |RQ = (B.1)
j

where the primes are for the states after the application of E, and Ei are the operation elements of E.




37
Bibliography

[1] M. A. Nielsen and I. L. Chuang. Quantum computation and quantum information. Cambridge University
Press, Cambridge (2000).
[2] J. Preskill. Physics 229: Advanced Methods of Physics - Quantum Computation and Information. California
Institute of Technology (1998). URL: http://www.theory.caltech.edu/people/preskill/ph229/
[3] A. Steane. Quantum computing. arXive e-print (URL: http://www.arXiv.org) quant-ph/9708022 (sub-
mitted to Rev. Mod. Phys.) (1997).
[4] N. Gisin, G. Ribordy, W. Tittel and H. Zbinden. Quantum cryptography. arXive e-print (URL:
http://www.arXiv.org) quant-ph/0101098 (2001). (submitted to Rev. Mod. Phys.).
[5] C. Cohen-Tannoudji, B. Diu and F. Lalo¨. Quantum Mechanics, Vol. I. John Wiley and Sons (1977).
e
[6] A. M. Turing. On computable numbers, with an application to Entsheidungsproblem. Proc. Lond. Math.
Soc. 2, 42: 230 (1936).
[7] C. E. Shannon. A mathematical theory of communication. Bell System Tech. J., 27: 379-423, 623-656
(1948).
[8] C. E. Shannon and A. D. Weaver. The Mathematical Theory of Communication. University of Illinois Press,
Urbana (1949).
[9] R. Landauer. Information is physical. Physics Today, 44(5): 22-29 (1991).
[10] Y. Manin. Computable and Uncomputable (in Russian). Sovetskoye Radio, Moscow (1980).
[11] P. Benio¬. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of
computers as represented by Turing machines. J. Stat. Phys., 21(5): 563-591 (1980).
[12] R. P. Feynman. Simulating physics with computers. Int. J. Theor. Phys., 21: 467 (1982).
[13] D. Deutsch. Quantum theory, the Church-Turing Principle and the universal quantum computer. Proc. R.
Soc. Lond. A, 400: 97 (1985).
[14] R. S. Ingarden and K. Urbanik. Information as a fundamental notion of statistical physics, Bull. Acad.
Polon. Sci., S´r. math. astr. phys., 9: 313-316 (1961).
e
[15] R. S. Ingarden and K. Urbanik. Quantum informational thermodynamics, Bull. Acad. Polon. Sci., S´r.
e
math. astr. phys., 21: 281-304 (1962).
[16] R. S. Ingarden. A simpli¬ed axiomatic de¬nition of information, Bull. Acad. Polon. Sci., S´r. math. astr.
e
phys., 11: 209-211 (1963).
[17] R. S. Ingarden. Information theory and thermodynamics of light. Part I. Foundations of information theory,
Fortchr. Phys., 12: 567-594 (1964).
[18] R. S. Ingarden. Simpli¬ed axioms for information without probability, Prace Mat., 9: 273-282 (1965).
[19] K. Urbanik. On the concept of information, Bull. Acad. Polon. Sci., S´r. math. astr. phys., 20: 887-890
e
(1972).



38
[20] P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings, 35 th
Annual Symposium on Fundamentals of Computer Science, IEEE Press, Los Alamitos, CA (1994).
[21] P. W. Shor. Polynomial time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM J. Comput., 26(5): 1484-1509 (1997).
[22] L. Grover. In Proc. 28 th Annual ACM Symposium on the theory of Computation, pages 212-219, ACM
Press, New York (1996).
[23] L. Grover. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 79(2): 325
(1997). arXive e-print (URL: http://www.arXiv.org) quant-ph/9706033.
[24] D. Dieks. Communication by EPR devices. Phys. Lett. A, 92(6): 271-272 (1982).
[25] W. K. Wooters and W. H. Zurek. A single quantum cannot be cloned. Nature, 299: 802-803 (1982).
[26] A. S. Holevo. Statistical problems in quantum physics. In Gisiro Maruyama and Jurii V. Prokhorov, editors,
Proceedings of the Second Japan-USSR Symposium on Probability Theory, pages 104-119, Springer-Verlag,
Berlin (1973).
[27] B. Schumacher. Quantum coding. Phys. Rev. A, 51: 2738-2747 (1996).
[28] A. R. Calderbank and P. W. Shor. Good quantum error-correcting codes exist. Phys. Rev. A, 54: 1098
(1996). arXive e-print (URL: http://www.arXiv.org) quant-ph/9512032.
[29] A. Steane. Multiple particle interference and quantum error-correction. Proc. R. Soc. London A, 452:
2551-2576 (1996).
[30] S. Singh. The Code Book. Fourth Estate Limited, London (1999).
[31] R. L. Rivest, A. Shamir and L. M. Adleman. A method of obtaining digital signatures and public-key
cryptosystems. Comm. ACM, 21(2): 120-126 (1978).
[32] C. H. Bennett and G. Brassard. Quantum cryptography: Public key distribution and coin tossing. In
Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pages 175-
179, IEEE, New York (1984). Bangalore, India, December 1984.
[33] C. H. Bennet, F. Bessette, G. Brassard, L. Salvail and J. Smolin. Experimental Quantum Cryptography.
J. Cryptology, 5: 3-28 (1992).
[34] D. S. Bethune and W. P. Risk. An autocompensating quantum key distribution system using polarization
splitting of light. In IQEC™98 Digest of Postdeadline Papers, pages QPD12-2, Optical Society of America,
Washington, DC (1998).
[35] Donald S. Bethune and William P. Risk. An autocompensating ¬ber-optic quantum cryptography system
based on polarization splitting of light. J. Quantum Electronics, 36(3): 100 (2000).
[36] A. Muller, H. Zbinden and N. Gisin. Quantum cryptography over 23 km in installed under-lake telecom
¬bre. Europhys. Lett., 33: 334-339 (1996).
[37] Y. Bakopoulos, Y. Vrettaros and A. Drigas. An Automatic Process for the Reliable and Secure Creation
and Distribution of Quantum Keys. Pending patent submitted to Industrial Property Organization O.B.Y.
Application number: 20010100204, dated: 19-4-2001, Athens (2001).




39

<< . .

. 7
( : 7)