<< . .

. 95
( : 97)



. . >>

Kim, Y. H., Kulik, S. P., and Shih, Y. (2001). Phys. Rev. Lett., 86, 1370.
Kimble, H. J. (1992). In Fundamental systems in quantum optics (ed. J. Dalibard,
J. M. Raimond, and J. Zinn-Justin), Chapter 10. North-Holland, Amsterdam.
Kittel, C. (1985). Introduction to solid state physics (7th edn). Wiley, New York.
Klauder, J. R. and Sudarshan, E. C. G. (1968). Fundamentals of quantum optics.
¼½
References

Benjamin, New York.
Klein, O. and Nishina, Y. (1929). Z. Phys., 52, 853.
Knill, E. and La¬‚amme, R. (1997). Phys. Rev. A, 55, 900.
Knill, E., Chuang, I., and La¬‚amme, R. (1998). Phys. Rev. A, 57, 3348.
Knill, E., La¬‚amme, R., and Milburn, G. J. (2001). Nature, 409, 46.
Kocher, C. A. and Commins, E. D. (1967). Phys. Rev. Lett., 18, 575.
Kraus, J. D. (1986). Radio astronomy. McGraw-Hill, New York.
Kwiat, P. G. and Weinfurter, H. (1998). Phys. Rev. A, 58, R2623.
Kwiat, P. G., Steinberg, A. M., and Chiao, R. Y. (1993). Phys. Rev. A, 47, R2472.
Kwiat, P. G., Steinberg, A. M., Eberhard, P. H., and Chiao, R. Y. (1994). Phys. Rev.
A, 49, 3209.
Kwiat, P. G., Weinfurter, H., Herzog, T., Zeilinger, A., and Kasevich, A. (1995a).
Phys. Rev. Lett., 74, 4763.
Kwiat, P. G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A. V., and Shih,
Y. H. (1995b). Phys. Rev. Lett., 75, 4337.
Kwiat, P. G., Weinfurter, H., and Zeilinger, A. (1996). Sci. Am., 75, 72.
Kwiat, P. G., White, A. G., Mitchell, J. R., Nairz, O., Weihs, G., Weinfurter, H., and
Zeilinger, A. (1999a). Phys. Rev. Lett., 83, 4725.
Kwiat, P. G., Waks, E., White, A. G., Appelbaum, I., and Eberhard, P. H. (1999b).
Phys. Rev. A, 60, R773.
Lamas-Linares, A., Simon, C., Howell, J. C., and Bouwmeester, D. (2002). Sci-
ence, 296, 712.
Lamb, W. E., Jr (1995). Appl. Phys. B , 60, 77.
Lamb, W. E., Jr and Scully, M. O. (1969). In Polarization, matiere et rayonment,
volume jubilaire en l™honneur d™Alfred Kastler (ed. French Physical Society), p. 363.
Presses Universitaires de France, Paris.
Lamoreaux, S. K. (1997). Phys. Rev. Lett., 78, 5.
Landau, L. D., Lifshitz, E. M., and Pitaevskii, L. P. (1984). Electrodynamics of
continuous media (2nd edn). Landau and Lifschitz course of theoretical physics,
Volume 8. Elsevier Butterworth-Heinemann, Oxford.
LaViolette, R. A. and Stapelbroek, M. G. (1989). J. Appl. Phys., 65, 830.
Lax, M. (1963). Phys. Rev., 129, 2342.
Lax, M., Lousell, W. H., and McKnight, W. B. (1974). Phys. Rev. A, 11, 1365.
Leinaas, J. M. and Myrheim, J. (1977). Nuovo Cim. B , 37, 1.
Lighthill, M. J. (1964). Introduction to Fourier analysis and generalized functions.
Cambridge monographs on mechanics and applied mathematics. Cambridge Univer-
sity Press.
¼¾ References

Lindblad, G. (1976). Commun. Math. Phys., 48, 119.
Loss, D. and DiVincenzo, D. P. (1998). Phys. Rev. A, 57, 120.
Loudon, R. (2000). The quantum theory of light (3rd edn). Clarendon Press, Oxford.
Mac Lane, S. and Birkho¬, G. (1967). Algebra. Macmillan, New York.
Magde, D. and Mahr, H. (1967). Phys. Rev. Lett., 18, 905.
Maker, P. D., Terhune, R. W., and Savage, C. M. (1963). In Proceedings of the third
conference on quantum electronics (ed. P. Grivet and N. Bloembergen), Paris, p.
1559. Columbia University Press, New York (1964).
Mandel, L. (1966). Phys. Rev., 144, 1071.
Mandel, L. and Wolf, E. (1995). Optical coherence and quantum optics. Cambridge
University Press.
Mandel, L., Sudarshan, E. C. G., and Wolf, E. (1964). Proc. Phys. Soc. London, 84,
435.
Mandel, O., Greiner, M., Widera, A., Rom, T., Hansch, T. W., and Bloch, I. (2003).
Nature, 425, 937.
Marion, J. B. and Thornton, S. T. (1995). Classical dynamics of particles and systems.
Saunders College Publ., Fort Worth, TX.
Matloob, R., Louden, R., Barnett, S. M., and Je¬ers, J. (1995). Phys. Rev. A, 52,
4823.
Mattle, K., Weinfurter, H., Kwiat, P. G., and Zeilinger, A. (1996). Phys. Rev.
Lett., 76, 4656.
Meltzer, D. and Mandel, L. (1971). Phys. Rev. A, 3, 1763.
Meystre, P. and Sargent, M. (1990). Elements of quantum optics (1st edn). Springer-
Verlag, New York.
Migdall, A. L. (2001). IEEE Trans. Instr. Meas., 50, 478.
Milburn, G. J. (1989). Phys. Rev. Lett., 62, 2124.
Millikan, R. A. (1916). Phys. Rev., 7, 355.
Milonni, P. W. (1994). The quantum vacuum. Academic Press, San Diego, CA.
Milonni, P. W. (1995). J. Mod. Opt., 42, 1991.
Milonni, P. W. and Eberly, J. H. (1988). Lasers. Wiley, New York.
Milonni, P. W. and Hardies, M. L. (1982). Phys. Lett. A, 92, 321.
Milonni, P. W. and Shih, M.-L. (1992). Contemp. Phys., 33, 313.
Mitchell, M. W., Hancox, C. I., and Chiao, R. Y. (2000). Phys. Rev. A, 62, 043819.
Mizumoto, T., Chihara, H., Toku, N., and Naito, Y. (1990). Elec. Lett., 26, 199.
Mlynek, J., Breitenbach, G., and Schiller, S. (1998). Physica Scripta, T76, 98.
Mohideen, U. and Roy, A. (1998). Phys. Rev. Lett., 81, 4549.
¼¿
References

Mollow, B. R. (1969). Phys. Rev., 188, 1969.
Mølmer, K. (1997). Phys. Rev. A, 55, 3195.
Mooij, J. E., Orlando, T. P., Levitov, L., Tian, L., van der Wal, C. H., and Lloyd, S.
(1999). Science, 285, 1036.
Muller, A., Zbinden, H., and Gisin, N. (1995). Nature, 378, 449.
Muller, A., Zbinden, H., and Gisin, N. (1996). Europhys. Lett., 33, 335.
Nagourney, W., Sandberg, J., and Dehmelt, H. G. (1986). Phys. Rev. Lett., 56, 2797.
Newell, A. C. and Moloney, J. V. (1992). Nonlinear optics. Addison-Wesley, Redwood
City, CA.
Newton, I. (1952). Opticks: or a treatise on the re¬‚ections, refractions, in¬‚ections
and colours of light”based on the 1730 edition. Dover, New York.
Newton, T. D. and Wigner, E. P. (1949). Rev. Mod. Phys., 21, 400.
Nielsen, M. A. and Chuang, I. L. (2000). Quantum computation and quantum infor-
mation. Cambridge University Press.
O™Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C., and Branning, D. (2003).
Nature, 426, 264.
Pan, J. W., Gasparoni, S., Aspelmeyer, M., Jennewein, T., and Zeilinger, A. (2003).
Nature, 421, 721.
Paul, W. (1990). Rev. Mod. Phys., 62, 531.
Peres, A. (1995). Quantum theory: concepts and methods. Fundamental theories of
physics, Volume 72. Kluwer, Dordrecht.
Petta, J. R., Johnson, A. C., Taylor, J. M., Laird, E. A., Yacoby, A., Lukin, M. D.,
Marcus, C. M., Hanson, M. P., and Gossard, A. C. (2005). Science, 309, 2180.
Pines, D. (1963). Elementary excitations in solids. Benjamin, New York.
Planck, M. (1959). The theory of heat radiation. Dover, New York.
Plenio, M. B. and Knight, P. L. (1998). Rev. Mod. Phys., 70, 101.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Nu-
merical recipes in Fortran: the art of scienti¬c computing. Cambridge University
Press, New York.
Pryce, M. H. L (1948). Proc. Roy. Soc. London, A 195, 62.
Purcell, E. M. (1946). Phys. Rev., 69, 681.
Rabi, I. I., Ramsey, N. F., and Schwinger, J. (1954). Rev. Mod. Phys., 26, 167.
Ralph, T. C. (2006). Rep. Prog. Phys., 69, 853.
Raushcenbeutal, A., Nogues, G., Osnaghi, S., Bertet, P., Brune, M., Raimond, J.-M.,
and Haroche, S. (2000). Science, 288, 2024.
Raussendorf, R. and Briegel, H. J. (2001). Phys. Rev. Lett., 86, 5188.
Raymer, M. G. and Funk, A. C. (2000). Phys. Rev. A, 61, 015801/1.
¼ References

Raymer, M. G., Cooper, J., Carmichael, H. J., Beck, M., and Smithey, D. T. (1995).
J. Opt. Soc. Am. B, 12, 1801.
Reck, M., Zeilinger, A., Bernstein, H. J., and Bertani, P. (1994). Phys. Rev. Lett., 73,
58.
Rempe, G., Walther, H., and Klein, N. (1987). Phys. Rev. Lett., 58, 353.
Rempe, G., Schmidt-Kaler, F., and Walther, H. (1990). Phys. Rev. Lett., 64, 2783.
Renninger, M. (1960). Z. Phys., 158, 417.
Richards, P. L. (1994). J. Appl. Phys., 76, 1.
Richtmyer, F. K., Kennard, E. H., and Lauritsen, T. (1955). Introduction to modern
physics. International series in pure and applied physics. McGraw-Hill, New York.
Riesz, F. and Sz.-Nagy, B. (1955). Functional analysis (2nd edn). Fredrick Ungar
Publ., New York.
Risken, H. (1989). The Fokker“Planck equation (2nd edn). Springer series in syner-
getics. Springer-Verlag, Berlin.
Rowe, M. A., Kielpinski, D., Meyer, V., Sackett, C. A., Itano, W. M., Monroe, C.,
and Wineland, D. J. (2001). Nature, 409, 791.
Russell, B. (1945). A history of western philosophy. Simon and Schuster, New York.
Saleh, B. E. A. and Teich, M. C. (1991). Fundamentals of photonics. Wiley series in
pure and applied optics. Wiley, New York.
Scarani, V., Iblisdir, S., Gisin, N., and Acin, A. (2005). Rev. Mod. Phys., 77, 1225.
Schawlow, A. L. and Townes, C. H. (1958). Phys. Rev., 112, 1940.
Schilpp, P. A. (ed.) (1949). Albert Einstein: philosopher“scientist (3rd edn). The
library of living philosophers, Volume VII. Cambridge University Press, London.
Schr¨dinger, E. (1935a). Proc. Cam. Phil. Soc., 31, 555.
o
Schr¨dinger, E. (1935b). Naturwissenschaften, 23, 807, 823, 844.
o
Schubert, M. and Wilhelmi, B. (1986). Nonlinear optics and quantum electronics.
Wiley, New York.
Schubert, M., Siemers, I., Blatt, R., Neuhauser, W., and Toschek, P. E. (1995). Phys.
Rev. A, 52, 2994.
Schuck, C., Huber, G., Kurtsiefer, C., and Weinfurter, H. (2006). Phys. Rev. Lett., 96,
190501.
Schuda, F., Stroud, C. R., Jr, and Hercher, M. J. (1974). J. Phys. B , 7, L198.
Schweber, S. S. (1961). An introduction to relativistic quantum ¬eld theory. Row,
Peterson and Co., Elmsford, NY.
Shapiro, J. H. (1980). Opt. Lett., 5, 351.
Shen, Y. R. (1984). The principles of nonlinear optics. Wiley, New York.
Shimoda, K., Takahasi, H., and Townes, C. H. (1957). J. Phys. Soc. Japan, 12, 686.
¼
References

Shimony, A. (1990). In 62 years of uncertainty (ed. A. I. Miller), p. 33. Plenum Press,
New York.
Shor, P. W. (1995). Phys. Rev. A, 52, R2493.
Shor, P. W. (1997). SIAM J. Comp., 26, 1484.
Siegman, A. E. (1986). Lasers. University Science Books, Mill Valley, CA.
Simmons, J. W. and Guttmann, M. J. (1970). States, waves and photons. Addison-
Wesley, Reading, MA.
Singh, S. (1999). The code book: the evolution of secrecy from Mary Queen of Scots
to quantum cryptography. Doubleday, New York.
Slater, J. C. (1950). Microwave electronics. Van Nostrand, Princeton, NJ.
Slusher, R. E., Hollberg, L., Yurker, B., Mertz, J. C., and Valley, J. F. (1985). Phys.
Rev. Lett., 55, 2409.
Smithey, D. T., Beck, M., Raymer, M. G., and Faridani, A. (1993). Phys. Rev.
Lett., 70, 1244.
Stalgies, Y., Siemers, I., Appasamy, B., Altevogt, T., and Toschek, P. E. (1996).
Europhys. Lett., 35, 259.
Stehle, P. (1970). Phys. Rev. A, 2, 102.
Steinberg, A. M. and Chiao, R. Y. (1994). Phys. Rev. A, 49(3), 2071.
Steinberg, A. M. and Chiao, R. Y. (1995). Phys. Rev. A, 51, 3525.
Steinberg, A. M., Kwiat, P. G., and Chiao, R. Y. (1992). Phys. Rev. Lett., 68, 2421.
Steinberg, A. M., Kwiat, P. G., and Chiao, R. Y. (1993). Phys. Rev. Lett., 71, 708.
Steinberg, A. M., Kwiat, P. G., and Chiao, R. Y. (2005). In Atomic, molecular,
and optical physics handbook (2nd edn) (ed. G. W. F. Drake), Chapter 80, p. 1195.
Springer-Verlag, Berlin.
Stoler, D. (1970). Phys. Rev. D, 1, 3217.
Stoneham, A. M., Fisher, A. J., and Greenland, P. T. (2003). J. Phys., 15, L447.
Su, C. and W´dkiewicz, K. (1991). Phys. Rev. A, 44, 6097.
o
Suarez, A. and Scarani, V. (1997). Phys. Lett. A, 232, 9.
Sudarshan, E. C. G. (1963). Phys. Rev. Lett., 10, 277.
Taylor, G. I. (1909). Proc. Cam. Phil. Soc., 15, 114.
Tipler, P. A. (1978). Modern physics. Worth, New York.
Tittel, W., Brendel, J., Zbinden, H., and Gisin, N. (1998). Phys. Rev. Lett., 81, 3653.
Torgerson, J., Branning, D., and Mandel, L. (1995). Appl. Phys. B , 60, 267.
Trimmer, J. D. (1980). Proc. Am. Phil. Soc., 124, 323.
van Enk, S. J. and Nienhuis, G. (1994). J. Mod. Opt., 41, 963.
van Houwelingen, J. A. W., Beveratos, A., Brunner, N., Gisin, N., and Zbinden, H.
¼ References

(2006). Phys. Rev. A, 74, 022303.
Vandersypen, L. M. K., Ste¬en, M., Breyta, G., Yannoni, C. S., Sherwood, M. H.,
and Chuang, I. L. (2001). Nature, 414, 883.
Varcoe, B. T. H., Brattke, S., Weidinger, M., and Walther, H. (2000). Nature (Lon-
don), 403, 743.
von Neumann, J. (1955). Mathematical foundations of quantum mechanics. Princeton
University Press.
Vrijen, R., Yablonovitch, E., Wang, K., Jiang, H. W., Balandin, A., Roychowdhury,
V., Mor, T., and DiVincenzo, D. (2000). Phys. Rev. A, 62, 012306.
Walls, D. F. and Milburn, G. J. (1994). Quantum optics. Springer-Verlag, Berlin.
Walther, H. (2003). Fortschr. Phys., 51, 521.
Walther, P. and Zeilinger, A. (2005). Phys. Rev. A, 72, 010302.
Walther, P., Resch, K. J., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V.,
Aspelmeyer, M., and Zeilinger, A. (2005). Nature, 434, 169.
Weisskopf, V. (1931). Ann. Phys. (Leipzig), 9, 23.
Weisskopf, V. and Wigner, E. (1930). Z. Phys., 63, 54.
Wentzel, G. (1926). Z. Phys., 40, 574.
White, A. G., James, D. F. V., Eberhard, P. H., and Kwiat, P. G. (1999). Phys. Rev.
Lett., 83, 3103.
Wiesner, S. J. (1983). SIGACT News, 15, 78.
Wigner, E. P. (1932). Phys. Rev., 40, 749.
Wigner, E. P. (1955). Phys. Rev., 98, 145.
Wigner, E. P. (1959). Group theory. Pure and applied physics, Volume 5. Academic
Press, New York.
Wood, R. W. (1904). Proc. Am. Acad., XI, 306.
Wood, R. W. (1912). Philos. Mag., 6, 689.
Wootters, W. K. and Zurek, W. H. (1982). Nature (London), 299, 802.
Wright, E. M., Chiao, R. Y., and Garrison, J. C. (1994). Chaos solitons and frac-
tals, 4, 1797.
Wu, F. Y., Grove, R. E., and Ezekiel, S. (1975). Phys. Rev. Lett., 35, 1426.
Wu, L. A., Kimble, H. J., Hall, J., and Wu, H. (1986). Phys. Rev. Lett., 57, 2520.
Yablonovitch, E. (1987). Phys. Rev. Lett., 58, 2059.
Yamamoto, Y., Imoto, N., and Machida, S. (1986). Phys. Rev. A, 33, 3243.
Yariv, A. (1989). Quantum electronics (3rd edn). Wiley, New York.
Yariv, A. and Yeh, P. (1984). Optical waves in crystals. Wiley series in pure and
applied optics. Wiley, New York.
¼
References

Yuen, H. P. (1976). Phys. Rev. A, 13, 2226.
Zauderer, E. (1983). Partial di¬erential equations of applied mathematics. Pure and
applied mathematics. Wiley, New York.
Zbinden, H., Brendel, J., Gisin, N., and Tittel, W. (2001). Phys. Rev. A, 63, 022111.
Zeilinger, A. (1981). Am. J. Phys., 49, 882.
Zel™dovich, Ya. B. and Klyshko, D. N. (1969). JETP Lett., 9, 40.
Zemansky, M. W. (1951). Heat and thermodynamics (3rd edn). McGraw-Hill, New
York.
Zhang, A. N., Lu, C. Y., Zhou, X. Q., Chen, Y. A., Zhao, Z., Yang, T., and Pan,
J. W. (2006). Phys. Rev. A, 73, 022330.
Zou, X. Y., Wang, L. J., and Mandel, L. (1991). Phys. Rev. Lett., 67, 318.
Index

waist, 80, 220, 227
absorption
coe¬cient, 20 Beer™s law, 20
Bell
of light, 15
additive noise, 432 expectation values, 588
inequality, 578, 590
adiabatic elimination, 377, 427
pair, 637
adjoint
matrix, 650 state measurement, 621
operator, 648 states, 410
alternating tensor, 70, 645 theorem, 589
bipartite system, 201
ampli¬er
birefringence, 399, 676
noise, 505
bit-¬‚ip, 627
noise number, 524
blackbody
noise temperature, 525
cavity, 5
uncertainty principle, 527
radiation, 5
amplitude squeezing/quadrature, 480
bleaching, 460
ancilla, 607
Bloch equation, 375
angular momentum
Bogoliubov transformation, 188, 477
electromagnetic, 100
Bohm singlet state, 580
orbital, 692
bolometers, 6, 266
spin, 692
Boltzmann™s principle, 17
total, 77, 693
annihilation operator, 43, 74 Born
approximation, 31
antilinear, 119
interpretation, 39, 52, 684
antinormal ordering, 167, 179
antire¬‚ection coating, 238, 246 Bose commutation relations, 46
Bose“Einstein statistics, 207
antiresonant Hamiltonian, 352
bosons, 46, 207
antiunitary, 119
bounded operator, 54, 648
atomic coherence, 375
atomic transition operator, 355, 442 box quantization, 81
bra vector, 680
avalanche
Bragg crystal spectrometer, 11
breakdown, 282
broadband detection, 272
multiplication
noise-free, 284
Cn , 201, 646, 681
avoided crossing, 384
c-number, 680
axial vector, 668
Campbell“Baker“Hausdor¬ theorem, 689
balanced canonical
commutation relation, 39“41, 690
beam splitter, 248
momentum, 112, 693
homodyne detector, 300
bare states, 383 momentum operator, 97, 694
Bargmann state, 546 quantization, 69
basis canonically conjugate variables
circular, 685 classical, 39
vector space, 646 quantum, 85, 121, 690
beam carrier
frequency, 88, 219
cleanup, 260
wavevector, 219
in geometric optics, 218
splitter, 247 cascade emission, 24
Casimir e¬ect, 62
balanced, 248
symmetrical, 247 Cauchy“Schwarz inequality, 646
¼
Index

constitutive equations
cavity
linear, 88, 672
frequency, 382
nonlinear, 394, 678
general, 37
continuous spectrum, 648
ideal, 32
controlled
lossy, 428
NOT gate, 633
mode cleaning, 534
modes, 32, 382 sign (or phase) gate, 633
planar, 63, 138, 669 convergent sequence of vectors, 647
convex linear combination, 53, 192, 204
rectangular, 33
convolution theorem, 652
centrosymmetric medium, 393
channeltrons, 282, 388 correlation matrix, 452
correspondence principle, 30, 148, 150
chaotic state, 177
Coulomb gauge, 661
characteristic function, 172
creation operator, 43, 74
antinormally-ordered, 191
cross-Kerr medium, 418, 634
normally-ordered, 183
cross-phase modulation, 418
charge density
cryptography
classical, 670
public key, 616
quantum, 118
circular polarization, 666 quantum, 617
right (left), 55, 667 current density
classical, 670
classical
quantum, 117
bit (cbit), 619
cut-o¬ function, 354
electromagnetic theory, 32
cyclic invariance of the trace, 683
feedforward, 638
nonlinear optics, 678
oscillator, 149 debyes, 134
states, 182 decay rate, 376
click (of a detector), 29 degenerate eigenvalue, 648
degree of degeneracy, 52, 648
closed system, 420
cluster state, 638 degree of freedom
coarse-grained cavity radiation, 7
delta function, 224, 233 mechanical, 40
operator density, 512 degree of polarization, 57
polarization, 90, 678 delta correlated, 434
coherence matrix, 56 delta function, 657
coherence time, 350 density
coherent state of states, 137
operator, 50, 270
diagonal representation, 166
of a single mode, 151, 176 dephasing rate, 376
of a wave packet, 168 detection
coincidence amplitude
basis, 636 one-photon, 213
counting, 286 two-photon, 214
detection, 12 loophole, 597
rate, 25 operator (Mandel), 108
collapse of a cavity state, 386 dichroic mirror, 535
collinear phase matching, 400 dielectrics

<< . .

. 95
( : 97)



. . >>