<< . .

. 92
( : 95)



. . >>

3. Prove inequality (13.19).
[Hint: using the Cauchy-Schwarz and Young inequalities, prove ¬rst that
1
1
(u ’ v)u dx ≥ ’v ∀ u, v ∈ L2 (0, 1).
2 2
u ,
L2 (0,1) L2 (0,1)
2
0


Then, use (13.18). ]
4. Assume that the bilinear form a(·, ·) in problem (13.12) is continuous and
coercive over the function space V (see (12.54)-(12.55)) with continuity and
coercivity constants M and ±, respectively. Then, prove that the stability
inequalities (13.20) and (13.21) still hold provided that ν is replaced by ±.

5. Show that the methods (13.39), (13.40) and (13.41) can be written in the
form (13.42). Then, show that the corresponding expressions of the arti¬cial
viscosity K and arti¬cial di¬usion ¬‚ux hdif f are as in Table (13.1).
j+1/2

6. Determine the CFL condition for the upwind scheme.
7. Show that for the scheme (13.43) one has un+1 ∆,2 ¤ un for all
∆,2
n ≥ 0.
[Hint: multiply equation (13.43) by un+1 , and notice that
j

1
(un+1 ’ un )un+1 ≥ |un+1 |2 ’ |un |2 .
j j
j j j
2
Then, sum on j the resulting inequalities, and note that

»a
un+1 ’ un+1 un+1 = 0
2 j=’∞ j+1 j’1 j



since this sum is telescopic.]
8. Show how to ¬nd the values µ and ν in Table 13.2 for Lax-Friedrichs and
Lax-Wendro¬ methods.
9. Prove (13.67).
10. Prove (13.69) when f = 0.
[Hint: take ∀t > 0, vh = uh (t) in (13.68).]
References




[Aas71] Aasen J. (1971) On the Reduction of a Symmetric Matrix to
Tridiagonal Form. BIT 11: 233“242.

[ABB+ 92] Anderson E., Bai Z., Bischof C., Demmel J., Dongarra J., Croz
J. D., Greenbaum A., Hammarling S., McKenney A., Ous-
trouchov S., and Sorensen D. (1992) LAPACK User™s Guide,
Release 1.0. SIAM, Philadelphia.

[Ada75] Adams D. (1975) Sobolev Spaces. Academic Press, New York.

[ADR92] Arioli M., Du¬ I., and Ruiz D. (1992) Stopping Criteria for
Iterative Solvers. SIAM J. Matrix Anal. Appl. 1(13).

[AF83] Alonso M. and Finn E. (1983) Fundamental University
Physics, volume 3. Addison-Wesley, Reading, Massachusetts.

[Arm66] Armijo L. (1966) Minimization of Functions Having Continu-
ous Partial Derivatives. Paci¬c Jour. Math. 16: 1“3.

[Arn73] Arnold V. I. (1973) Ordinary Di¬erential Equations. The MIT
Press, Cambridge, Massachusetts.

[Atk89] Atkinson K. E. (1989) An Introduction to Numerical Analysis.
John Wiley, New York.

[Avr76] Avriel M. (1976) Non Linear Programming: Analysis and
Methods. Prentice-Hall, Englewood Cli¬s, New Jersey.
628 References

[Axe94] Axelsson O. (1994) Iterative Solution Methods. Cambridge
University Press, New York.
[Bar89] Barnett S. (1989) Leverrier™s Algorithm: A New Proof and
Extensions. Numer. Math. 7: 338“352.
[Bat90] Batterson S. (1990) Convergence of the Shifted QR Algorithm
on 3 by 3 Normal Matrices. Numer. Math. 58: 341“352.
[BBC+ 94] Barrett R., Berry M., Chan T., Demmel J., Donato J., Don-
garra J., Eijkhout V., Pozo V., Romine C., and van der Vorst
H. (1994) Templates for the Solution of Linear Systems: Build-
ing Blocks for Iterative Methods. SIAM, Philadelphia.
[BD74] Bj¨rck A. and Dahlquist G. (1974) Numerical Methods.
o
Prentice-Hall, Englewood Cli¬s, N.J.
[BDMS79] Bunch J., Dongarra J., Moler C., and Stewart G. (1979) LIN-
PACK User™s Guide. SIAM, Philadelphia.
[Ber82] Bertsekas D. P. (1982) Constrained Optimization and La-
grange Multiplier Methods. Academic Press. Inc., San Diego,
California.
[Bj¨88]
o Bj¨rck A. (1988) Least Squares Methods: Handbook of Numer-
o
ical Analysis Vol. 1 Solution of Equations in RN . Elsevier
North Holland.
[BM92] Bernardi C. and Maday Y. (1992) Approximations Spectrales
des Probl´mes aux Limites Elliptiques. Springer-Verlag, Paris.
e
[BMW67] Barth W., Martin R. S., and Wilkinson J. H. (1967) Calcula-
tion of the Eigenvalues of a Symmetric Tridiagonal Matrix by
the Method of Bisection. Numer. Math. 9: 386“393.
[BO78] Bender C. M. and Orszag S. A. (1978) Advanced Mathemati-
cal Methods for Scientists and Engineers. McGraw-Hill, New
York.
[Boe80] Boehm W. (1980) Inserting New Knots into B-spline Curves.
Computer Aided Design 12: 199“201.
[Bos93] Bossavit A. (1993) Electromagnetisme, en vue de la modelisa-
tion. Springer-Verlag, Paris.
[BR81] Bank R. E. and Rose D. J. (1981) Global Approximate Newton
Methods. Numer. Math. 37: 279“295.
[Bra75] Bradley G. (1975) A Primer of Linear Algebra. Prentice-Hall,
Englewood Cli¬s, New York.
References 629

[Bre73] Brent R. (1973) Algorithms for Minimization Without Deriva-
tives. Prentice-Hall, Englewood Cli¬s, New York.

[Bri74] Brigham E. O. (1974) The Fast Fourier Transform. Prentice-
Hall, Englewood Cli¬s, New York.

[BS90] Brown P. and Saad Y. (1990) Hybrid Krylov Methods for Non-
linear Systems of equations. SIAM J. Sci. and Stat. Comput.
11(3): 450“481.

[BSG96] B. Smith P. B. and Gropp P. (1996) Domain Decomposition,
Parallel Multilevel Methods for Elliptic Partial Di¬erential
Equations. Univ. Cambridge Press, Cambridge.

[But64] Butcher J. C. (1964) Implicit Runge-Kutta Processes. Math.
Comp. 18: 233“244.

[But66] Butcher J. C. (1966) On the Convergence of Numerical So-
lutions to Ordinary Di¬erential Equations. Math. Comp. 20:
1“10.

[But87] Butcher J. (1987) The Numerical Analysis of Ordinary Di¬er-
ential Equations: Runge-Kutta and General Linear Methods.
Wiley, Chichester.

[CCP70] Cannon M., Cullum C., and Polak E. (1970) Theory and Op-
timal Control and Mathematical Programming. McGraw-Hill,
New York.
¨
[CFL28] Courant R., Friedrichs K., and Lewy H. (1928) Uber die
partiellen di¬erenzengleichungen der mathematischen physik.
Math. Ann. 100: 32“74.

[CHQZ88] Canuto C., Hussaini M. Y., Quarteroni A., and Zang T. A.
(1988) Spectral Methods in Fluid Dynamics. Springer, New
York.

[CI95] Chandrasekaren S. and Ipsen I. (1995) On the Sensitivity of
Solution Components in Linear Systems of equations. SIAM
J. Matrix Anal. Appl. 16: 93“112.

[CL91] Ciarlet P. G. and Lions J. L. (1991) Handbook of Numerical
Analysis: Finite Element Methods (Part 1). North-Holland,
Amsterdam.

[CM94] Chan T. and Mathew T. (1994) Domain Decomposition Algo-
rithms. Acta Numerica pages 61“143.
630 References

[CMSW79] Cline A., Moler C., Stewart G., and Wilkinson J. (1979) An
Estimate for the Condition Number of a Matrix. SIAM J. Sci.
and Stat. Comput. 16: 368“375.

[Col66] Collin R. E. (1966) Foundations for Microwave Engineering.
McGraw-Hill Book Co., Singapore.

[Com95] Comincioli V. (1995) Analisi Numerica Metodi Modelli Appli-
cazioni. McGraw-Hill Libri Italia, Milano.

[Cox72] Cox M. (1972) The Numerical Evaluation of B-splines. Jour-
nal of the Inst. of Mathematics and its Applications 10: 134“
149.

[Cry73] Cryer C. W. (1973) On the Instability of High Order
Backward-Di¬erence Multistep Methods. BIT 13: 153“159.

[CT65] Cooley J. and Tukey J. (1965) An Algorithm for the Machine
Calculation of Complex Fourier Series. Math. Comp. 19: 297“
301.

[Dah56] Dahlquist G. (1956) Convergence and Stability in the Nu-
merical Integration of Ordinary Di¬erential Equations. Math.
Scand. 4: 33“53.

[Dah63] Dahlquist G. (1963) A Special Stability Problem for Linear
Multistep Methods. BIT 3: 27“43.

[Dat95] Datta B. (1995) Numerical Linear Algebra and Applications.
Brooks/Cole Publishing, Paci¬c Grove, CA.

[Dau88] Daubechies I. (1988) Orthonormal bases of compactly sup-
ported wavelets. Commun. on Pure and Appl. Math. XLI.

[Dav63] Davis P. (1963) Interpolation and Approximation. Blaisdell
Pub., New York.

[Day96] Day D. (1996) How the QR algorithm Fails to Converge and
How to Fix It. Technical Report 96-0913J, Sandia National
Laboratory, Albuquerque.

[dB72] de Boor C. (1972) On Calculating with B-splines. Journal of
Approximation Theory 6: 50“62.

[dB83] de Boor C. (1983) A Practical Guide to Splines. In Applied
Mathematical Sciences. (27), Springer-Verlag, New York.

[dB90] de Boor C. (1990) SPLINE TOOLBOX for use with MAT-
LAB. The Math Works, Inc., South Natick.
References 631

[DD95] Davis T. and Du¬ I. (1995) A combined
unifrontal/multifrontal method for unsymmetric sparse
matrices. Technical Report TR-95-020, Computer and
Information Sciences Department, University of Florida.

[Dek69] Dekker T. (1969) Finding a Zero by means of Successive Linear
Interpolation. In Dejon B. and Henrici P. (eds) Constructive
Aspects of the Fundamental Theorem of Algebra, pages 37“51.
Wiley, New York.

[Dek71] Dekker T. (1971) A Floating-Point Technique for Extending
the Available Precision. Numer. Math. 18: 224“242.

[Dem97] Demmel J. (1997) Applied Numerical Linear Algebra. SIAM,
Philadelphia.

[DGK84] Dongarra J., Gustavson F., and Karp A. (1984) Implementing
Linear Algebra Algorithms for Dense Matrices on a Vector
Pipeline Machine. SIAM Review 26(1): 91“112.

[Die87a] Dierckx P. (1987) FITPACK User Guide part 1: Curve Fitting
Routines. TW Report, Dept. of Computer Science, Katholieke
Universiteit, Leuven, Belgium.

[Die87b] Dierckx P. (1987) FITPACK User Guide part 2: Surface
Fitting Routines. TW Report, Dept. of Computer Science,
Katholieke Universiteit, Leuven, Belgium.

[Die93] Dierckx P. (1993) Curve and Surface Fitting with Splines.
Claredon Press, New York.

[DL92] DeVore R. and Lucier J. (1992) Wavelets. Acta Numerica
pages 1“56.

[DR75] Davis P. and Rabinowitz P. (1975) Methods of Numerical In-
tegration. Academic Press, New York.

[DS83] Dennis J. and Schnabel R. (1983) Numerical Methods for Un-
constrained Optimization and Nonlinear Equations. Prentice-
Hall, Englewood Cli¬s, New York.

[Dun85] Dunavant D. (1985) High Degree E¬cient Symmetrical Gaus-
sian Quadrature Rules for the Triangle. Internat. J. Numer.
Meth. Engrg. 21: 1129“1148.

[Dun86] Dunavant D. (1986) E¬cient Symmetrical Cubature Rules for
Complete Polynomials of High Degree over the Unit Cube.
Internat. J. Numer. Meth. Engrg. 23: 397“407.
632 References

[DV84] Dekker K. and Verwer J. (1984) Stability of Runge-Kutta
Methods for Sti¬ Nonlinear Di¬erential Equations. North-
Holland, Amsterdam.

[dV89] der Vorst H. V. (1989) High Performance Preconditioning.
SIAM J. Sci. Stat. Comput. 10: 1174“1185.

[EEHJ96] Eriksson K., Estep D., Hansbo P., and Johnson C. (1996)
Computational Di¬erential Equations. Cambridge Univ.
Press, Cambridge.

[Elm86] Elman H. (1986) A Stability Analisys of Incomplete LU Fac-
torization. Math. Comp. 47: 191“218.

[Erd61] Erd¨s P. (1961) Problems and Results on the Theory of Inter-
o
polation. Acta Math. Acad. Sci. Hungar. 44: 235“244.

[Erh97] Erhel J. (1997) About Newton-Krylov Methods. In Periaux J.
and al. (eds) Computational Science for 21st Century, pages
53“61. Wiley, New York.

¨
[Fab14] Faber G. (1914) Uber die interpolatorische Darstellung
stetiger Funktionem. Jber. Deutsch. Math. Verein. 23: 192“
210.

[FF63] Faddeev D. K. and Faddeeva V. N. (1963) Computational
Methods of Linear Algebra. Freeman, San Francisco and Lon-
don.

[Fle75] Fletcher R. (1975) Conjugate gradient methods for inde¬nite
systems. In Springer-Verlag (ed) Numerical Analysis, pages
73“89. New York.

[FM67] Forsythe G. E. and Moler C. B. (1967) Computer Solution
of Linear Algebraic Systems. Prentice-Hall, Englewood Cli¬s,
New York.

[Fra61] Francis J. G. F. (1961) The QR Transformation: A Unitary
Analogue to the LR Transformation. Parts I and II. Comp. J.
pages 265“272,332“334.

[FRL55] F. Richtmyer E. K. and Lauritsen T. (1955) Introduction to
Modern Physics. McGraw-Hill, New York.

[Gas83] Gastinel N. (1983) Linear Numerical Analysis. Kershaw Pub-
lishing, London.
References 633

[Gau94] Gautschi W. (1994) Algorithm 726: ORTHPOL - A Package of
Routines for Generating Orthogonal Polynomials and Gauss-
type Quadrature Rules. ACM Trans. Math. Software 20: 21“
62.

[Gau96] Gautschi W. (1996) Orthogonal Polynomials: Applications
and Computation. Acta Numerica pages 45“119.

[Gau97] Gautschi W. (1997) Numerical Analysis. An Introduction.
Birkh¨user, Berlin.
a

[Geo73] George A. (1973) Nested Dissection of a Regular Finite Ele-
ment Mesh. SIAM J. Num. Anal. 10: 345“363.

[Giv54] Givens W. (1954) Numerical Computation of the Character-
istic Values of a Real Symmetric Matrix. Oak Ridge National
Laboratory ORNL-1574.

[GL81] George A. and Liu J. (1981) Computer Solution of Large
Sparse Positive De¬nite Systems. Prentice-Hall, Englewood
Cli¬s, New York.

[GL89] Golub G. and Loan C. V. (1989) Matrix Computations. The
John Hopkins Univ. Press, Baltimore and London.

[GM83] Golub G. and Meurant G. (1983) Resolution Numerique des
Grands Systemes Lineaires. Eyrolles, Paris.

[GMW81] Gill P., Murray W., and Wright M. (1981) Practical Optimiza-
tion. Academic Press, London.

[God66] Godeman R. (1966) Algebra. Kershaw, London.

[Gol91] Goldberg D. (1991) What Every Computer Scientist Should
Know about Floating-point Arithmetic. ACM Computing
Surveys 23(1): 5“48.

[GP67] Goldstein A. A. and Price J. B. (1967) An E¬ective Algorithm
for Minimization. Numer. Math 10: 184“189.

[GR96] Godlewski E. and Raviart P. (1996) Numerical Approximation
of Hyperbolic System of Conservation Laws, volume 118 of
Applied Mathematical Sciences. Springer-Verlag, New York.

[Hac94] Hackbush W. (1994) Iterative Solution of Large Sparse Sys-
tems of Equations. Springer-Verlag, New York.

[Hah67] Hahn W. (1967) Stability of Motion. Springer-Verlag, Berlin.
634 References

[Hal58] Halmos P. (1958) Finite-Dimensional Vector Spaces. Van Nos-
trand, Princeton, New York.
[Hen62] Henrici P. (1962) Discrete Variable Methods in Ordinary Dif-
ferential Equations. Wiley, New York.
[Hen74] Henrici P. (1974) Applied and Computational Complex Anal-
ysis, volume 1. Wiley, New York.
[HGR96] H-G. Roos M. Stynes L. T. (1996) Numerical Methods for
Singularly Perturbed Di¬erential Equations. Springer-Verlag,
Berlin Heidelberg.
[Hig88] Higham N. (1988) The Accuracy of Solutions to Triangular
Systems. University of Manchester, Dep. of Mathematics 158:
91“112.
[Hig89] Higham N. (1989) The Accuracy of Solutions to Triangular
Systems. SIAM J. Numer. Anal. 26(5): 1252“1265.
[Hig96] Higham N. (1996) Accuracy and Stability of Numerical Algo-
rithms. SIAM Publications, Philadelphia, PA.
[Hil87] Hildebrand F. (1987) Introduction to Numerical Analysis.
McGraw-Hill, New York.
[Hou75] Householder A. (1975) The Theory of Matrices in Numerical
Analysis. Dover Publications, New York.
[HP94] Hennessy J. and Patterson D. (1994) Computer Organiza-
tion and Design - The Hardware/Software Interface. Morgan
Kaufmann, San Mateo.
[HW76] Hammarling S. and Wilkinson J. (1976) The Practical Be-
haviour of Linear Iterative Methods with Particular Reference
to S.O.R. Technical Report Report NAC 69, National Physi-
cal Laboratory, Teddington, UK.
[IK66] Isaacson E. and Keller H. (1966) Analysis of Numerical Meth-
ods. Wiley, New York.
[Inm94] Inman D. (1994) Engineering Vibration. Prentice-Hall, Engle-
wood Cli¬s, NJ.
[Iro70] Irons B. (1970) A Frontal Solution Program for Finite Element
Analysis. Int. J. for Numer. Meth. in Engng. 2: 5“32.
[Jac26] Jacobi C. (1826) Uber Gauβ neue Methode, die Werthe der

<< . .

. 92
( : 95)



. . >>