<< Пред. стр.

стр. 2
(общее количество: 4)

ОГЛАВЛЕНИЕ

След. стр. >>

Изменения в сообществе водных позвоночных мы подробнее проанализируем чуть позже, в главе 11. Здесь же мы лишь отметим, что с начала триаса верхние трофические уровни морских экосистем оказываются совершенно закрытыми для рыб: их формируют недавние вселенцы в море - хищные рептилии. Однако во второй половине мезозоя (примерно в одно время с началом расцвета внутреннераковинных головоногих) рыбы возвращают себе лидирующие позиции: в морях появились акулы современного типа - с челюстью, подвижной относительно мозговой капсулы, что позволяет им отрывать куски от жертвы большого размера (например, кита), а не глотать ее целиком [27]. Именно они, возможно, конкурентно вытеснили по крайней мере часть морских рептилий (например, ихтиозавров). Самые крупные акулы жили в миоцене: Carcharodon megalodon (близкая родственница знаменитой белой акулы) достигала в длину 30 м; питалось это чудовище, по всей видимости, небольшими китами, пик разнообразия которых приходится как раз на время ее существования (рисунок 28). Самые же крупные из современных хищных акул [28] (белая, тигровая) питаются в значительной степени другими акулами, являясь, таким образом, подлиным венцом трофической пирамиды.



8. Ранний палеозой: "выход жизни на сушу". Появление почв и почвообразователей. Высшие растения и их средообразующая роль. Тетраподизация кистеперых рыб.


Вплоть до самого недавнего времени человек выносил из школьного учебника биологии и популярных книг по теории эволюции такую примерно картину события, именуемого обычно "Выходом жизни на сушу". В начале девонского периода (или в конце силурийского) на берегах морей (точнее - морских лагун) появились заросли первых наземных растений - псилофитов (рисунок 29, а), положение коих в системе растительного царства остается не вполне ясным. Растительность сделала возможным появление на суше беспозвоночных животных - многоножек, паукообразных и насекомых; беспозвоночные, в свою очередь, создали пищевую базу для наземных позвоночных - первых амфибий (ведущих свое происхождение от кистеперых рыб) - таких, как ихтиостега (рисунок 29, б). Наземная жизнь в те времена занимала лишь чрезвычайно узкую прибрежную полоску, за которой простирались необозримые пространства абсолютно безжизненных первичных пустынь.
Так вот, согласно современным представлениям, в означенной картине неверным (или, по меньшей мере, неточным) является практически всё - начиная с того, что достаточно развитая наземная жизнь достоверно существовала много раньше (уже в следующем за кембрием ордовикском периоде), и кончая тем, что упомянутые "первые амфибии" наверняка были существами чисто водными, не имеющими связи с сушей. Дело, однако, даже не в этих частностях (о них мы поговорим в свой черед). Важнее другое: скорее всего, принципиально неверна сама формулировка - "Выход живых организмов на сушу". Есть серьезные основания полагать, что сухопутные ландшафты современного облика в те времена вообще отсутствовали, и живые организмы не просто вышли на сушу, а в некотором смысле создали ее как таковую. Впрочем, давайте по порядку.
Итак, первый вопрос - когда; когда же все-таки на Земле появились первые несомненно наземные организмы и экосистемы? Однако тут сразу возникает встречный вопрос: а как определить, что некий вымерший организм, с которым мы столкнулись - именно наземный? Это вовсе не так просто, как кажется на первый взгляд, ибо принцип актуализма здесь будет работать с серьезными сбоями. Типичный пример: начиная с середины силурийского периода в палеонтологической летописи появляются скорпионы - животные по нынешним временам вроде бы сугубо сухопутные. Однако сейчас уже достаточно твердо установлено, что палеозойские скорпионы [29] дышали жабрами и вели водный (или, по крайней мере, амфибиотический) образ жизни; наземные же представители отряда, у которых жабры превращены в характерные для паукообразных легкие "книжечного" типа (book-lungs), появились лишь в начале мезозоя. Следовательно, находки в силурийских отложениях скорпионов сами по себе ничего (в интересующем нас плане) не доказывают.
Более продуктивно здесь, как кажется, отслеживать появление в летописи не наземных (по нынешним временам) групп животных и растений, а определенных анатомических признаков "сухопутности". Так, например, растительная кутикула с устьицами и остатки проводящих тканей - трахеид наверняка должны принадлежать наземным растениям: под водой, как легко догадаться, и устьица, и проводящие сосуды ни к чему... Однако существует и иной - воистину замечательный! - интегральный показатель существования в данное время наземной жизни. Подобно тому, как показателем существования на планете фотосинтезирующих организмов является свободный кислород, показателем существования наземных экосистем может служить почва: процесс почвообразования идет только на суше, а ископаемые почвы (палеопочвы) хорошо отличимы по структуре от любых типов донных отложений.
Надо заметить, что почва сохраняется в ископаемом состоянии не слишком часто; лишь в последние десятилетия на палеопочвы перестали смотреть как на некую экзотическую диковинку и начали их систематическое изучение. В итоге в изучении древних кор выветривания (а почва есть не что иное, как биогенная кора выветривания) произошла подлинная революция, буквально перевернувшая прежние представления о жизни на суше. Самые древние палеопочвы найдены в глубоком докембрии - в раннем протерозое; в одной из них, имеющей возраст 2,4 млрд лет, С. Кемпбелл (1985) обнаружил несомненные следы жизнедеятельности фотосинтезирующих организмов - углерод со смещенным изотопным отношением 12С/13С. В этой связи можно упомянуть и обнаруженные недавно остатки цианобактериальных построек в протерозойских карстовых полостях: процессы карстования - образование котловин и пещер в водорастворимых осадочных породах (известняки, гипсы) - могут идти только на суше.
Другим фундаментальным открытием в этой области следует считать обнаружение Г. Реталляком (1985) в ордовикских палеопочвах вертикальных норок, прорытых какими-то достаточно крупными животными - видимо, членистоногими или олигохетами (дождевыми червями) [30]; в этих почвах нет никаких корней (которые обычно сохраняются очень хорошо), но есть своеобразные трубчатые тельца - Реталляк интерпретирует их как остатки несосудистых растений и/или наземных зеленых водорослей. В несколько более поздних, силурийских, палеопочвах найдены копролиты (окаменевшие экскременты) каких-то почвообитающих животных; пищей им, судя по всему, служили гифы грибов, составляющие заметную долю вещества копролитов (впрочем, не исключено, что грибы могли и вторично развиться на органике, содержащейся в копролитах).
Итак, к настоящему моменту два факта могут считаться установленными достаточно твердо:
Жизнь появилась на суше очень давно, в среднем докембрии. Она была представлена, судя по всему, различными вариантами водорослевых корок (в том числе - амфибиотическими матами) и, возможно, лишайниками [31]; все они могли осуществлять процессы архаичного почвообразования.
Животные (беспозвоночные) существовали на суше по меньшей мере с ордовика, т.е. задолго до появления высшей растительности (чьи достоверные следы по-прежнему остаются неизвестными до позднего силура). Средой обитания и пищей этим беспозвоночным могли служить упомянутые выше водорослевые корки; при этом сами животные неизбежно становились мощным почвообразующим фактором.
Последнее обстоятельство заставляет вспомнить одну старую дискуссию - о двух возможных путях заселения суши беспозвоночными. Дело в том, что неморские ископаемые этого возраста были очень редки, и все гипотезы на сей предмет казались лишь более или менее убедительными спекуляциями, не подлежащими реальной проверке. Одни исследователи предполагали, что животные вышли из моря напрямую - через литораль с водорослевыми выбросами и иными укрытиями; другие настаивали на том, что сперва были заселены пресноводные водоемы, и лишь с этого "плацдарма" началось впоследствии "наступление" на сушу. Среди сторонников первой точки зрения выделялись своей убедительностью построения М.С. Гилярова (1947), который, основываясь на сравнительном анализе адаптаций современных почвообитающих животных, доказывал, что именно почва должна была служить первичной средой обитания самых ранних жителей суши [32]. При этом надо учитывать, что почвенная фауна действительно крайне плохо попадает в палеонтологическую летопись и отсутствие ископаемых "документов" здесь вполне объяснимо. У этих построений, однако, был один по-настоящему уязвимый пункт: а откуда же взялась сама эта почва, если в те времена еще не было наземной растительности? Всем ведь известно, что почвообразование идет при участии высших растений - сам Гиляров называл настоящими почвами лишь те, что связаны с ризосферой, а все прочее - корами выветривания... Однако теперь - когда стало известно, что примитивное почвообразование возможно и с участием одних лишь низших растений - концепция Гилярова обрела "второе дыхание", а недавно была впрямую подтверждена данными Реталляка по ордовикским палеопочвам.
С другой стороны, несомненные пресноводные фауны (которые содержат, помимо всего прочего, дорожки следов на поверхности осадка) появляются намного позже - в девоне. В их состав входят скорпионы, мелкие (примерно в ладонь величиной) ракоскорпионы, рыбы и первые неморские моллюски; среди моллюсков есть и двустворчатые - длительно живущие организмы, неспособные переносить заморы и пересыхание водоемов. Фауны же с такими бесспорно-почвенными животными, как тригонотарбы ("панцирные пауки") и растительноядные двупарноногие многоножки существуют уже в силуре (лудловский век). А поскольку водная фауна всегда попадает в захоронения на порядок лучше, чем наземная, то все это позволяет сделать еще один вывод:
Почвенная фауна появилась существенно раньше пресноводной. То есть - по крайней мере для животных пресные воды не могли играть роль "плацдарма" при завоевании суши.
Этот вывод, однако, заставляет нас вернуться к тому самому вопросу, с которого мы начинали свои рассуждения, а именно: вышли живые организмы на сушу или фактически создали ее как таковую? А.Г. Пономаренко (1993) полагает, что все сообщества, о которых шла речь выше, на самом деле трудно с определенностью назвать "наземными" или "сообществами внутриконтинентальных водоемов" (хотя по крайней мере маты должны были существенную часть времени находиться в воде). Он считает, что "существование настоящих континентальных водоемов, как текучих, так и стоячих, представляется весьма проблематичным до того, как в девоне сосудистая растительность несколько снизила скорость эрозии и стабилизировала береговую линию". Основные события должны были происходить в уже знакомых нам выположенных прибрежных амфибиотических ландшафтах без стабильной береговой линии - "не суша, не море" (см. главу 5 ).
Не менее необычная (с точки зрения сегодняшнего дня) обстановка должна была складываться и на водоразделах, занятых "первичными пустынями". В наши дни пустыни существуют в условиях недостатка влаги (при превышении испарения над выпадением осадков) - что и препятствует развитию растительности. А вот в отсутствие растений ландшафт парадоксальным образом становился тем более пустынным (по облику), чем больше выпадало осадков: вода активно размывала горные склоны, прорезая глубокие каньоны, при выходе на равнину давала конгломераты, а дальше по равнине распространялись разрозненные по поверхности псефиты [33], которые называют равнинным пролювием; ныне такие отложения слагают лишь конусы выноса временных водотоков.
Эта картина позволяет по-новому взглянуть на одно странное обстоятельство. Почти все известные силурийско-девонские наземные флоры и фауны найдены в различных точках древнего Континента красного песчаника (Old Red Sandstone), названного так по характерным для него породам - красноцветам; все местонахождения при этом связаны с отложениями, считающимися дельтовыми. Иными словами, выходит, что весь этот континент (объединявший Европу и восток Северной Америки) представляет собой как бы одну сплошную гигантскую дельту. Резонный вопрос: а где же располагались соответствующие реки - ведь для них на континенте таких размеров просто нет площадей водосбора! Остается предположить что все эти "дельтовые" отложения, по всей видимости, возникали именно в результате процессов эрозии в описанных выше "мокрых пустынях".
Итак, жизнь на суше (которая, впрочем, не вполне еще суша) вроде бы существует с незапамятных времен, а в конце силура просто-напросто появляется еще одна группа растений - сосудистые (Tracheophyta)... Однако на самом деле появление сосудистых растений - одно из ключевых событий в истории биосферы, ибо по своей средообразующей роли эта группа живых организмов не имеет себе равных, по крайней мере, среди эукариот. Именно сосудистая растительность и внесла, как мы увидим далее, решающий вклад в становление наземных ландшафтов современного облика.
Общепринятой считается та точка зрения, что некие водоросли, жившие вблизи берега, сначала "высунули голову на воздух", затем заселили приливно-отливную зону, а потом, постепенно превращаясь в высшие растения, целиком вышли на берег. За этим последовало постепенное завоевание ими суши. Предками высших растений большинство ботаников считает одну из групп зеленых водорослей - харовых (Charophyta); они образуют ныне сплошные заросли на дне континентальных водоемов - как пресных, так и соленых, тогда как в море (да и то лишь в опресненных заливах) найдены всего несколько видов. Харовые обладают дифференцированным талломом и сложно устроенными органами размножения; с высшими растениями их сближают несколько уникальных анатомических и цитологических признаков - симметричные спермии, присутствие фрагмопласта (структуры, участвующей в построении клеточной стенки в процессе деления) и наличие одинакового набора фотосинтетических пигментов и запасных питательных веществ.
Однако против этой точки зрения выдвигалось серьезное - чисто палеонтологическое - возражение. Если процесс преобразования водорослей в высшие растения действительно происходил в прибрежных водах (где условия для попадания в палеонтологическую летопись наиболее благоприятны), то почему мы не видим никаких его промежуточных стадий? Тем более, что и сами харовые появляются в позднем силуре - одновременно с сосудистыми растениями, а особенности биологии этой группы не дают оснований оснований предполагать для нее длительный период "скрытого существования"... Поэтому появилась парадоксальная, на первый взгляд, гипотеза: а почему, собственно говоря, появление макроостатков высших растений в конце силура должно однозначно трактоваться как следы их выхода на сушу? Может быть, совсем наоборот - это следы переселения высших растений в воду? Во всяком случае, многие палеоботаники (С.В. Мейен, Г. Стеббинс, Г. Хилл) активно поддерживали гипотезу о происхождении высших растений не от водных макрофитов (типа харовых), а от наземных зеленых водорослей. Именно этим сухопутным (а потому не имеющим реальных шансов попасть в захоронения) "первичным высшим растениям" могли принадлежать загадочные споры с трехлучевой щелью, которые весьма многочисленны в раннем силуре и даже в позднем ордовике (начиная с карадокского века).
Впрочем, недавно выяснилось, что, судя по всему, правы сторонники обеих точек зрения - каждые по-своему. Дело в том, что некоторые из микроскопических наземных зеленых водорослей имеют тот же самый комплекс тонких цитологических признаков, что харовые и сосудистые (см. выше); эти микроводоросли теперь стали включать в состав Charophyta. Таким образом, возникает вполне логичная и непротиворечивая картина. Первоначально существовала - на суше - группа зеленых водорослей ("микроскопические харовые"), от которой в силуре произошли две близкородственные группы: "настоящие" харовые, заселившие континентальные водоемы, и высшие растения, начавшие осваивать сушу, и лишь спустя некоторое время (в полном соответствии со схемой Мейена) появившиеся в прибрежных местообитаниях.
Из курса ботаники вам должно быть известно, что высшие растения (Embryophyta) делятся на сосудистые (Tracheophyta) и мохообразные (Bryophyta) - мхи и печеночники. Многие ботаники (например, Дж. Ричардсон, 1992) считают, что именно печеночники (если исходить из их современных жизненных стратегий) - главные претенденты на роль "первопроходцев суши": они живут ныне на наземных водорослевых пленках, в мелководных эфемерных водоемах, в почве - совместно с синезелеными водорослями. Интересно, что азотфиксирующая сине-зеленая водоросль Nostoc способна жить внутри тканей некоторых печеночников и антоцеротовых, обеспечивая своих хозяев азотом; это наверняка было очень важно для первых обитателей примитивных почв, где этот элемент не мог не быть в жестком дефиците [34]. Упоминавшиеся выше споры из позднеордовикских и раннесилурийских отложений наиболее схожи именно со спорами печеночников (достоверные макроостатки этих растений появляются позже, в раннем девоне).


Однако в любом случае мохообразные (если даже они действительно появились еще в ордовике) облик континентальных ландшафтов вряд ли изменили. Первые же сосудистые растения - риниофиты [35] - появились в позднем силуре (лудловский век); вплоть до раннего девона (жединский век) они были представлены крайне однообразными остатками единственного рода Cooksonia, простейшего и архаичнейшего из сосудистых. А вот в отложениях следующего века девона (зигенского) мы находим уже множество разнообразных риниофитов (рисунок 30). С этого времени среди них обособляются две эволюционные линии. Одна из них пойдет от рода Zosterophylum к плауновидным (в их число входят и древовидные лепидодендроны - одни из основных углеобразователей в следующем, карбоновом, периоде). Вторая линия (в ее основание обычно помещают род Psilophyton) ведет к хвощеобразным, папоротникам и семенным - голосеменным и покрытосеменным (рисунок 30). Даже девонские риниофиты еще очень примитивны и, честно говоря, неясно - можно ли назвать их "высшими растениями" в строгом смысле: у них есть проводящий пучок (правда, сложенный не трахеидами, а особыми вытянутыми клетками со своеобразным рельефом стенок), но отсутствуют устьица. Такое сочетание признаков должно свидетельствовать о том, что растения эти никогда не сталкивались с дефицитом воды (можно сказать, что вся их поверхность являет собою одно большое открытое устьице), и, по всей видимости, являлись гелофитами (то есть росли "по колено в воде", вроде нынешнего камыша).
Появление сосудистых растений с их жесткими вертикальными осями вызвало целый каскад экосистемных новаций, изменивших облик всей биосферы:
Фотосинтезирующие структуры стали располагаться в трехмерном пространстве, а не на плоскости (как это было до сих пор - в период господства водорослевых корок и лишайников). Это резко увеличило интенсивность образования органического вещества и, тем самым, суммарную продуктивность биосферы.
Вертикальное расположение стволов сделало растения более устойчивыми к занесению смываемым мелкоземом (по сравнению, например, с водорослевыми корками). Это уменьшило безвозвратные потери экосистемой неокисленного углерода (в виде органики) - совершенствование углеродного цикла.
Вертикальные стволы наземных растений должны быть достаточно жесткими (по сравнению с водными макрофитами). Для обеспечения этой жесткости возникла новая ткань - древесина, которая после гибели растения разлагается относительно медленно. Таким образом, углеродный цикл экосистемы обретает дополнительное резервное депо и, соответственно, стабилизируется.
Появление постоянно существующего запаса трудноразложимой органики (сконцентрированного в основном в почве) ведет к радикальной перестройке пищевых цепей. С этого времени большая часть вещества и энергии оборачивается через детритные, а не через пастбищные цепи (как это было в водных экосистемах).
Для разложения трудноусваиваемых веществ, из которых состоит древесина - целлюлозы и лигнина - потребовались новые типы разрушителей мертвой органики. С этого времени на суше роль основных деструкторов переходит от бактерий к грибам.
Для поддержания ствола в вертикальном положении (в условиях действия силы тяжести и ветров) возникла развитая корневая система: ризоидами - как у водорослей и мохообразных - тут уже не обойдешься. Это привело к заметному снижению эрозии и появлению закрепленных (ризосферных) почв.
С.В. Мейен полагает, что суша должна была покрыться растительностью к концу девона (зигенский век) [36], поскольку с начала следующего, карбонового, периода на Земле образуются уже практически все типы осадков, отлагающихся ныне на континентах. В дозигенские же времена континентальные осадки практически отсутствуют - видимо, в связи с их постоянным вторичным размывом в результате нерегулируемого стока. В самом начале карбона на континентах начинается угленакопление - а это свидетельствует о том, что на пути стока вод стояли мощные растительные фильтры. Не будь их, остатки растений непрерывно смешивались бы с песком и глиной, так что получались бы обломочные породы, обогащенные растительными остатками - углистые сланцы и углистые песчаники, а не настоящие угли.
Итак, возникшая в прибрежных амфибиотических ландшафтах густая "щетка" из гелофитов (можно назвать ее "риниофитный камыш") начинает действовать как фильтр, регулирующий плащевой сток: она интенсивно отцеживает (и осаживает) сносимый с суши обломочный материал и формирует тем самым стабильную береговую линию. Некоторым аналогом этого процесса может служить формирование крокодилами "аллигаторовых прудов": животные постоянно углубляют и расширяют населяемые ими болотные водоемы, выбрасывая грунт на берег. В результате их многолетней "ирригационной деятельности" болото превращается в систему чистых глубоких прудов, разделенных широкими облесенными "дамбами". Так и сосудистая растительность в девоне разделила пресловутые амфибиотические ландшафты на "настоящую сушу" и "настоящие пресноводные водоемы". Не будет ошибкой сказать, что именно сосудистая растительность стала истинным исполнителем заклинания: "Да будет твердь!" - отделивши оную твердь от хляби...


Именно с вновь возникшими пресноводными водоемами связано и появление в позднем девоне (фаменский век) первых тетрапод (четвероногих) - группы позвоночных, имеющих две пары конечностей; она объединяет в своем составе амфибий, рептилий, млекопитающих и птиц (попросту говоря, тетраподы - это все позвоночные, кроме рыб и рыбообразных). В настоящее время общепринято, что тетраподы ведут свое происхождение от кистеперых рыб (Rhipidistia) (рисунок 31); эта реликтовая группа имеет ныне единственного живого представителя, латимерию [37]. Достаточно популярная некогда гипотеза происхождения четвероногих от другой реликтовой группы рыб - двоякодышащих (Dipnoi), ныне практически не имеет сторонников.
Необходимо отметить, что в прежние годы возникновение ключевого признака тетрапод - двух пар пятипалых конечностей - считали их однозначной адаптацией к наземному (или по меньшей мере амфибиотическому) образу жизни. Ныне, однако, большинство исследователей склоняется к тому, что "проблема появления четвероногих" и "проблема их выхода на сушу" - суть вещи разные и даже не связанные между собою прямой причинной связью. Предки тетрапод жили в мелководных, часто пересыхающих, обильно заросших растительностью водоемах непостоянной конфигурации. Судя по всему, конечности появились для того, чтобы передвигаться по дну водоемов (это особенно важно, когда водоем обмелел настолько, что у тебя уже спина начинает вытарчивать наружу) и продираться сквозь плотные заросли гелофитов; особенно же полезны конечности оказались для того, чтобы при пересыхании водоема переползти посуху в другой, соседний.


Первые, девонские, тетраподы - примитивные амфибии лабиринтодонты [38] (название это происходит от их зубов с лабиринтоподобными складками эмали - структура, прямо унаследованная от кистеперых: см. рисунок 31), такие как ихтиостега и акантостега, в захоронениях всегда встречаются вместе с рыбами, которыми, судя по всему, и питались. Они были покрыты чешуей, как рыбы, имели хвостовой плавник (похожий на тот, что мы видим у сома или налима), органы боковой линии и - в некоторых случаях - развитый жаберный аппарат; конечность их еще не пятипалая (число пальцев достигает 8), и по типу сочленения с осевым скелетом - типично плавательная, а не опорная. Все это не оставляет сомнения в том, что существа эти были чисто водными (рисунок 32); если они и появлялись на суше при неких "пожарных" обстоятельствах (пересыхание водоема), то компонентом наземных экосистем наверняка не являлись [39]. Лишь много позже, в карбоновом периоде, появились мелкие наземные амфибии - антракозавры, которые, судя по всему, питались членистоногими, но об этом речь впереди (см. главу 10).
Особого внимания заслуживает тот факт, что в девоне появляется целый ряд неродственных параллельных групп стегоцефалоподобных кистеперых рыб - причем как до, так и после возникновения "настоящих" тетрапод (лабиринтодонтов). Одной из таких групп были пандерихтиды - кистеперые, лишенные спинного и анального плавников, чего не бывает ни у каких других рыб. По строению черепа (уже не "рыбьему", а "крокодильему"), плечевого пояса, гистологии зубов и положению хоан (внутренних ноздрей) пандерихтиды очень сходны с ихтиостегой, однако приобрели эти признаки явно независимо. Таким образом, перед нами процесс, который можно назвать параллельной тетраподизацией кистеперых (он был детально изучен Э.И. Воробьевой). Как обычно, "заказ" на создание четвероногого позвоночного, способного жить (или, по крайней мере, выживать) на суше был дан биосферой не одному, а нескольким "конструкторским бюро"; "выиграла конкурс" в конечном итоге та группа кистеперых, которая "создала" известных нам тетрапод современного типа. Однако наряду с "настоящими" тетраподами еще долго существовал целый спектр экологически сходных полуводных животных (типа пандерихтид), сочетающих признаки рыб и амфибий - если так можно выразиться, "отходы" процесса тетраподизации кистеперых.



9. Поздний палеозой - ранний мезозой: криоэры и термоэры. Палеозойские леса и континентальные водоемы - растения и насекомые.
Выдающийся палеоботаник С.В. Мейен, анализируя механизм возникновения прочно устоявшихся научных предрассудков, приводит в качестве примера цитату из школьного учебника биологии, где речь идет о карбоновом (каменноугольном) периоде "с его теплым влажным климатом и воздухом, богатым углекислым газом вследствие сильной вулканической деятельности... С конца каменноугольного периода в связи с усиленным горообразованием, охватившим в следующем (пермском) периоде весь земной шар, влажный климат почти повсеместно сменился сухим. В новых условиях древовидные папоротники стали быстро вымирать... Вымерли и семенные папоротники." Дело даже не в прямых фактических ошибках (например, "семенные папоротники" [40], которые якобы погибли из-за установления в перми засушливого климата, на самом деле благополучно дожили почти до конца мезозоя, а пермь вообще была временем их расцвета). Серьезнее другое: представления о том, что карбон - время теплого и влажного климата, а пермь - время повсеместной аридизации, сформировались в прошлом веке; эта картина была нарисована европейскими геологами и палеонтологами на европейском материале, а затем - безо всяких на то оснований! - распространена на всю Землю. Уже в начале нашего века стало ясно, что ситуация в Еврамерийской области карбона (территория нынешних Европы и Северной Америки) сходна с Катазией (Китай и Индокитай), но радикально отлична от того, что наблюдалось в Гондване (на материках Южного полушария и Индии) и в Ангариде (северная Азия) (см. рисунок 33); тем не менее, на возникший чуть ли не полтора века назад стереотип все это ничуть не повлияло - как можно видеть из цитированного выше учебника 80-х годов.
РИСУНОК 33. Расположение главных палеофлористических областей в позднем палеозое при современном положении материков (а) и на мобилистской реконструкции (б). А - Ангарская, Е - Еврвмерийская, К - Катазиатская и Г - Гондванская области.
Причины климатических различий, существовавших в позднем палеозое между Еврамерией и Катазией, с одной стороны, и Гондваной и Ангаридой - с другой, кажутся вполне очевидными: первые располагались на тогдашнем экваторе, а вторые - вблизи полюсов (рисунок 33, б). Представьте-ка себе, что мы попытаемся экстраполировать на всю нынешнюю Землю картину амазонских джунглей!.. Однако здесь сразу же возникает встречный вопрос: а всегда ли на Земле существовала широтная климатическая зональность, сходная с нынешней? Для ответа логично обратиться к сопоставлению высоко- и низкоширотных флор соответствующих эпох прошлого (учитывая при этом иное, чем теперь, расположение материков относительно полюса).
Картина эволюции растительности от девона до наших дней выяснена (в общих чертах) достаточно давно. Для наиболее молодых, кайнозойских, флор установлена ясная климатическая зональность, хотя и отличная от нынешней (на арктических островах росли деревья, характерные ныне для зоны широколиственных лесов - например, каштаны и платаны). Мезозойские флоры существенно более однообразны по всей Земле. Сложнее ситуация с палеозоем. Пермские и позднекарбоновые флоры Европы и Северной Америки, как уже было сказано, сходны с китайскими, но резко отличны и от сибирских, и от флор всех материков Южного полушария. Но ниже по геологическому разрезу - в раннем карбоне и далее, в девоне, мы снова сталкиваемся с единством флор различных материков. Отсюда можно заключить, что климатическая зональность была минимальной в девоне и начале карбона, затем усилилась в позднем палеозое, снова ослабла в мезозое, а потом опять начала усиливаться, достигнув ныне своего максимума.
Мы с вами помним, что в верхнепалеозойских слоях всех гондванских материков найдены ледниковые отложения - тиллиты (которые послужили одним из отправных пунктов в построениях Вегенера); следы оледенений найдены и в одновозрастных отложениях Ангариды. А вот за изъятием этого отрезка времени (поздний карбон - ранняя пермь) и современности климат в высоких широтах был если и не жарким, то во всяком случае безморозным: в раннем карбоне и Европы, и Шпицбергена, и Сибири найдены толстые, явно многолетние стволы плауновидных с маноксилической древесиной [41], а в эоцене острова Элсмир (Канадский архипелаг) - крокодилы. Современная климатическая картина с крупными полярными шапками из снега и льда - скорее исключение, чем правило в геологической истории. Так что следует искать ответа не на вопрос, почему в раннем карбоне и в мезозое не было полярных шапок, а на вопрос, отчего они иногда образовывались (и меняли весь климат планеты). Периоды существования такого контрастного климата с холодными полюсами, как в позднем палеозое и позднем кайнозое, называют криоэрами ("криос" - по-гречески холод), а выровненного по всей Земле (как в мезозое) - соответственно, термоэрами. Общее количество тепла, получаемое Землей от Солнца, считается достаточно постоянным во все времена; здесь существует своя циклика (см. главу 14), но расстояние-то между ними неизменно. Следовательно, дело в основном в распределении этого тепла по поверхности планеты, прежде всего - в характере и интенсивности теплопереноса от экватора к полюсам.
Для начала, как водится, несколько общих замечаний. Поскольку планета шарообразна, солнечные лучи всегда будут, при прочих равных, нагревать ее экватор сильнее, чем полюса - экваториально-полярный температурный градиент; любой градиент стремится к выравниванию (просто по Второму закону термодинамики) - в нашем случае за счет постоянного теплообмена между низкими широтами и высокими. Теплообмен этот осуществляется посредством конвекции в обеих подвижных оболочках Земли - гидросфере и атмосфере.


Конвекция в гидросфере - это теплые морские течения, которые обогревают высокоширотные области точно так же, как водяное отопление - ваши квартиры. Движущей силой конвекционных токов, как мы помним из главы 2 (о мантийной конвекции), являются возникающие в среде архимедовы силы плавучести: когда часть вещества "тонет" или "всплывает", этот объем - в силу связности среды - замещается веществом, поступающим из другой ее точки. В нашем случае токи в Мировом океане могут возникать за счет того, что "тонет" либо холодная (четырехградусная) вода в высоких широтах (термическая циркуляция), либо избыточно осолоненная (в результате испарения) вода на экваторе (галинная циркуляция). При термической циркуляции вода движется от экватора по поверхности, а от полюсов - по дну (формируя при этом холодную насыщенную кислородом психросферу), а при галинной - наоборот (рисунок 34, б).
Говоря о конвекции в атмосфере, необходимо учитывать, что здесь тепло переносится главным образом водяным паром: тепловая энергия, затраченная на испарение воды, выделяется там, где этот пар, перенесенный воздушными течениями, превратится обратно в жидкость - то есть выпадет в виде осадков. Атмосфера каждого из полушарий распадается на три широтных сегмента [42] - конвективные ячейки: экваториальная, умеренных широт и приполярная. В каждой из ячеек существует относительно замкнутая воздушная циркуляция, причем направления циркуляции в граничащих между собой ячейках противоположны ("по часовой стрелке" - "против" - опять "по") - в точности, как в цепи шестеренок (рисунок 34, а). В одной половине ячейки доминируют восходящие токи, во второй - нисходящие; соответственно, влага, испаряющаяся в первой половине, выпадает главным образом во второй - и при этом происходит разгрузка теплоты парообразования. Например, в экваториальной ячейке Северного полушария ток направлен от севера к югу, так что в южной ее половине возникают влажные тропические леса, а в северной - засушливые саванны; в ячейке же умеренных широт, где направление тока обратное, пустыни возникают на юге, а субтропические и широколиственные леса - на севере. Другим фактором атмосферной конвекции (главным образом широтным) являются муссоны - сезонные ветры постоянного направления, дующие с океана на континент или обратно; с муссонами связано, среди прочего, чередование сухого сезона и сезона дождей в тропических широтах, где температура весь год постоянна.
Так вот, возвращаясь к крио- и термоэрам. Ныне (как, видимо, и вообще в криоэрах) основной приток тепла в высокие широты осуществляется мощными теплыми течениями вроде Гольфстрима. При этом возникает температурная аномалия: океан в районе 60-х широт существенно (почти на 20 градусов!) теплее, чем следовало бы из соображений геометрии планеты. Однако это обстоятельство имеет и оборотную сторону: на материке развивается мощный зимний антициклон (область высокого давления) с температурами на 20 градусов ниже, чем следовало бы. Из антициклона "вытекает" холодный сухой воздух, тогда как встречный ток теплого воздуха лишь "приподнимает верхушку" антициклона - то есть тепловая энергия расходуется на механическую работу против силы тяжести. В итоге континентальные антициклоны работают как мощные всепланетные холодильники (влияние Сибирского антициклона ощущается далеко на юге и приводит к холодным зимам не только в Приморье, но и в Китае, и даже во Вьетнаме), которые ослабляют муссоны и не дают им продвинуться сколь-нибудь далеко в полярном направлении. Теплые воды отводятся из эваториальной зоны столь быстро, что практически не успевают осолониться за счет испарения, так что галинная составляющая океанской циркуляции по сравнению с термической пренебрежимо мала; в атмосфере существуют упомянутые выше три ячейки. Ситуация может быть кратко охаректеризована так: "Водный теплоперенос - теплые океаны - холодные материки".
В термоэры (в частности, в мезозое) ситуация, судя по всему, была принципиально иной. А.Г. Пономаренко (1996), предложивший соответствующую модель, обращает внимание на два обстоятельства, кажущиеся необъяснимыми с нынешних позиций. Во-первых, приполярные области были очень теплыми (исходя из состава их фауны и флоры), что требует куда более интенсивного, чем ныне, теплопереноса от экватора к полюсу. Во-вторых, в тогдашней экваториальной зоне (где ныне находятся дождевые тропические леса) растительность была явно ксерофильной и возникали эвапориты - отложения, являющиеся показателем аридных (пустынных) условий.
При отсутствии полярных шапок температура океанической воды не падает до 4њ, когда ее плотность максимальна, и не происходит полного опускания поверхностных вод. Компенсирующие такое погружение мощные теплые течения не возникают; теплая вода из экваториальной зоны практически не отводится, она осолоняется за счет испарения и погружается на дно - галинная циркуляция здесь резко доминирует над термической. Поверхностные слои океанов в умеренных широтах относительно холодны, и температурного контраста между океанами и материками не возникает; не возникает и зимнего антициклона, так что ничто теперь не мешает муссону переносить теплый воздух и водяной пар чуть ли не до самого полюса.
Если в криоэрах в каждом из полушарий существуют три атмосферные ячейки и единственная (термическая) океанская, то в термоэрах ситуация, похоже, была как бы зеркальной. В атмосфере существует единственная ячейка, в которой происходит прямой перенос тепла и влаги из приэкваториальных областей в приполярные; это хорошо объясняет упомянутый выше парадокс с располагающимся на экваторе аридным поясом [43]. В гидросфере, напротив, существуют две ячейки, причем в экваториальной ячейке циркуляция идет по галинному типу, а в высокоширотной - по термическому. В зоне соприкосновения гидросферных ячеек, где водные массы движутся друг навстречу другу, должны возникать апвелинги [44]; подтверждением тому служит распространение по этой предполагаемой границе обогащенных органикой черносланцевых формаций, которые отлагаются в избыточно-продуктивных морских акваториях.
Данную ситуацию (ее, по аналогии с предыдущей, можно охарактеризовать как "Атмосферный теплоперенос - холодные океаны - теплые материки") отличает высокая выравненность климата по всей планете: температурный градиент как между низкими и высокими широтами, так и между океанами и материками много слабее нынешнего. Климат на большей части Земли был близок к субтропическому и теплоумеренному средиземноморского типа. Следует особо подчеркнуть, что результатом этой выравненности был не только более сильный (по сравнению с нынешним) обогрев приполярных областей, но и некоторое охлаждение областей экваториальных; иными словами, в мезозое, судя по всему, отсутствовал не только бореальный климат (как в тундре и тайге), но и тропический климат современного типа!
Возвращаясь к истории наземной растительности в позднем палеозое (который, как мы теперь знаем, был криоэрой), следует опровергнуть еще один широко распространенный стереотип. Часто говорят, что палеозой был "временем споровых растений", а мезозой - "временем голосеменных". В действительности же заболоченные леса из древовидных папоротников, древовидных плауновидных (лепидодендронов) и древовидных хвощеобразных (каламитов) - те самые, что обычно фигурируют на картинках в популярных книжках по палеонтологии и в школьных учебниках (рисунок 35, а) - характерны лишь для тропического пояса тех времен - Еврамерии и Катазии с их жарким и влажным климатом. Во внетропических же областях и Северного, и Южного полушарий, где тогда существовали покровные оледенения, исчезновение древовидных споровых и наступление "времени голосеменных" произошло уже в середине карбона.
РИСУНОК 35. Растительный мир каменоугольного периода - заболоченный карбоновый лес (а) и растения, характерные для тропической Еврамерийской (б-г) и внетропической Ангарской (д-е) и Гондванской (ж) областей: (б) - лепидодендрон (плаунообразное), (в) - каламит (хвощеобразное), (г) - древовидный папоротник Eospermatopsis, (д) - лофиодендрон и томиодендрон (плаунообразные), (е) - кордаиты (хвойные), (ж) - глоссоптерис (гинкговое).
На севере, в Ангариде, основу растительности составляли хвойные из подкласса кордаитов - деревья до 20 м высотой (рисунок 35, е); древесина ангарских кордаитов имеет четкие годичные кольца, подтверждающие существование там сезонного климата - эти леса иногда называют "кордаитовой тайгой" (В раннем карбоне, когда климат Ангариды еще был безморозным, здешняя растительность была представлена плауновидными, совершенно, правда, не похожими на еврамерийские: заросли томиодендронов являли собою "сапожную щетку" из неветвящихся "палок" в 2-3 м высотой и 10-15 см в диаметре - рисунок 35, д). На юге, в Гондване, растительность состояла в основном из глоссоптериевых - листопадных гинкговых [45] (рисунок 35,ж); существование единой позднепалеозойской глоссоптериевой флоры в Африке, Южной Америке, Австралии и Индии послужило, как мы помним, одним из главных аргументов в пользу единства этих континентов в составе суперконтинента Гондвана. Следует специально заметить, что и кордаиты, и глоссоптериевые первоначально появились в тропиках, в Еврамерии, но там они не играли сколь-нибудь заметной роли в экосистемах; однако затем они расселились во внетропические области, где и пережили подлинный эволюционный расцвет. Такая ситуация (эволюционный расцвет группы вдали от первичного центра ее происхождения) весьма обычна; очень характерно и направление этой миграции - из тропиков во внетропические области (более подробно - смотри главу 14-а).
Что до лепидофитовых лесов Еврамерии, то их экологическая структура была крайне своеобразна и не имеет современных аналогов. Это были неглубокие (первые метры), переполненные органическими остатками водоемы, а формировавшие эти "леса" высокоствольные (до 40 метров) плауновидные и хвощеобразные были гелофитами, стоявшими "по колено в воде" [46]. С другой стороны, это были и не болота современного типа, где деревья вырастают поверх торфяника; в карбоновом "лесу" корневые системы лепидофитов (стигмарии) располагались ниже торфоподобной органической массы, а сами деревья прорастали сквозь нее и многометровый слой "валежника". Основные фотосинтезирующие поверхности этих древовидных споровых составляли не листья (довольно жалкая "метелка" на самом кончике 40-метровой "палки"), а периодически опадающая толстая зеленая кора; по аналогии с современными листопадными лесами, эти карбоновые леса иногда называют "коропадными". В этой крупноскважной подстилке существовала богатая фауна членистоногих - паукообразных и многоножек; среди последних попадались гиганты длиною до метра. Именно растительноядные двупарноногие многоножки были основными (а может - и единственными) в то время потребителями опавшей листвы. Считают, что все они вели амфибиотический образ жизни, сходный с обитателями современных игуапо - "черноводных" тропических лесов Амазонии, которые почти по полгода залиты многометровыми паводками.
Лепидофитовые "леса-водоемы" (как их назвал А.Г. Пономаренко) занимали как раз те выположенные приморские низменности, которые первоначально были заняты цианобактериальными и водорослевыми матами, а потом "риниофитными камышами". Именно в этих приморских бассейнах, называемых паралическими, и шли основные процессы углеобразования. Специалисты по лесоведению предполагают, что у лепидофитов естественное выпадение подроста происходило (в отличие от современных лесов) не на ранних стадиях его роста, а на поздних: то есть сперва вырастает густая поросль, а потом она одновременно падает. Эти неритмичные поступления больших количеств мертвой органики в детритную цепь экосистемы ("то густо, то пусто") создавали существенные проблемы с утилизацией этой органики. С другой стороны, противоэрозионные свойства этих "лесов", по сравнению с современными, были весьма слабы, а водоразделы продолжали размываться почти столь же интенсивно, что и прежде. Доводом в пользу отсутствия (или очень слабого развития) растительности на водоразделах являются очень частые в это время прижизненные захоронения деревьев вместе с их корневыми системами: такое случается при быстром выносе большой массы осадков (вроде селевого потока), которая "заживо погребает" растения. В итоге большой отпад в карбоновых "лесах-водоемах" при высокой эрозии (обеспечивающей его быстрое захоронение) приводил к тому, что значительная доля неокисленного органического углерода безвозвратно уходила из экосистемы и превращалась в запасы каменного угля.
Последнее обстоятельство заставляет вновь вернуться к цитированному нами учебнику, повествующему школьникам о карбоновом периоде "с его теплым влажным климатом и воздухом, богатым углекислым газом вследствие сильной вулканической деятельности". А как мы теперь помним - из балансовых моделей - захоронение больших количеств неокисленной органики (что и происходило в процессе углеобразования) по идее должно было вести как раз к уменьшению доли атмосферной углекислоты и, соответственно, к возрастанию содержания кислорода. Это предположение о составе тогдашней атмосферы может быть подкреплено с довольно неожиданной стороны.
На школьных олимпиадах по биологии, проводимых биофаком МГУ, есть "золотой фонд" из вопросов, ответа на которые (если по-честному) не знает никто. В их числе есть и такой: "Почему в карбоновом периоде насекомые достигали размеров, максимальных за всю историю класса (например, стрекоза Meganeura с размахом крыльев до 1 м)?" Стандартный ответ - "Потому что в это время еще не существовало конкурентов и хищников в лице летающих позвоночных - не только птиц и летучих мышей, но и крылатых ящеров," - вряд ли можно счесть достаточным: гигантизм насекомых был характерен только для карбона, и существа эти вымерли, когда до появления первых птерозавров оставалось еще примерно сто миллионов (!) лет.


Одно из наиболее убедительных объяснений таково. Главным фактором, ограничивающим размер тела насекомого (самые крупные из них - тропические жуки-голиафы размером чуть больше куриного яйца), считают особенности их дыхательной системы. "Кровь" насекомых (гемолимфа) лишена дыхательных пигментов и не участвует в переносе кислорода; дыхание же осуществляется при помощи трахей - ветвящихся трубочек, непосредственно соединяющих клетки внутренних органов с воздушной средой. Воздух внутри трахейной трубки неподвижен - принудительной вентиляции, как в различных типах легочных мешков, там нет, и приток кислорода внутрь тела (так же, как отток углекислого газа) происходит за счет диффузии при разнице парциальных давлений этих газов на внутреннем и внешнем концах трубки. Такой механизм подачи кислорода жестко ограничивает длину трахейной трубки, максимальная протяженность которой (l) достаточно просто вычисляема "из физики"; поэтому максимальный размер тела самого насекомого не может превышать (в сечении) величины 2l , что и составляет ныне то самое "куриное яйцо" - размер жука-голиафа [47]. Поэтому существование в карбоне таких гигантов, как стрекоза-меганевра или основная ее добыча - диктионевриды размером с голубя (рисунок 36), заставляет предположить, что в те времена парциальное давление кислорода в земной атмосфере было заметно выше, чем ныне - как оно и должно быть при захоронении больших количеств неокисленного углерода. Кстати, видимо именно это увеличение соотношения O2/CO2 в атмосфере планеты вызвало "обратный парниковый эффект", приведший к Гондванскому оледенению (как уже однажды случалось в докембрии).
Необходимо заметить, что появление в конце раннего карбона (намюр) крылатых насекомых вообще было одним из ключевых событий в истории жизни на суше. Собственно говоря, вся история наземных экосистем - это фактически история трех групп живых организмов: сосудистых растений, насекомых и позвоночных-тетрапод (о них речь пойдет чуть позже - в главе 10), а также их взаимодействия между собой. Оговорка насчет "крылатых" насекомых не случайна: вообще-то первые насекомые (архаичные формы из подкласса первичнобескрылых - Apterygota) появились в девоне, однако именно с возникновением способности к полету у крылатых насекомых (подкласс Pterygota) эта группа стала самой процветающей в животном царстве (сейчас известно более миллиона видов - много больше, чем всех прочих живых существ, вместе взятых).
Крыло насекомого - в отличие от крыльев всех летающих позвоночных - не является видоизмененной конечностью и представляет собой разросшуюся складку кутикулы грудных сегментов, укрепленную жилками - полыми каналами с утолщенными стенками, по которым осуществляется кровоснабжение крыла, проходят нервы и трахеи. Как предполагает А.П. Расницын (1976), крылатые насекомые произошли от предков, обитавших на деревьях и питавшихся содержимым спорангиев; при питании и нападении хищников (паукообразных) они вынуждены были регулярно прыгать с ветки на ветку или на землю (рисунок 36, г). Очевидное преимущество особей, способных к дальнему и точному прыжку и к контролю за положением тела в воздухе обусловило развитие крыльев. Зачатки крыльев в виде боковых пластинчатых выростов на грудных сегментах возникали именно у крупных насекомых, т.к. при малых размерах увеличение поверхности тела невыгодно (и длина прыжка, и особенно его точность уменьшается из-за влияния ветра). Предположение о том, что первичным типом питания для насекомых была палинофагия (питание пыльцой и спорами) и высасывание семезачатков, полностью подтвердилось, когда недавно был открыт способ прямо проанализировать содержимое пищеварительного тракта ископаемых насекомых: оказалось, что у древнейших насекомых кишечники буквально набиты пыльцой. В захоронениях до 70% семезачатков кордаитов оказываются поврежденны (видимо, диктионевридами).
Первые крылатые насекомые летали не слишком хорошо. Они, подобно современным подёнкам (Ephemeroptera), имели не только личиночные, но и имагинальные линьки (имаго - конечная стадия развития насекомого, способная к полету и размножению). Для имагинальных линек необходимо сохранять внутри крыла, между слоями кутикулы, живую ткань; такое крыло тяжелое и неуклюжее (недаром поденки лишь порхают над самой поверхностью реки, где развиваются их личинки), однако во времена, когда еще не было воздушных хищников, лучшего не требовалось. Подлинную революцию вызвало появление насекомых, отказавшихся от имагинальных линек и превративших крыло в тонкую легкую двуслойную кутикулу - стрекоз. Эти воздушные хищники оказались таким же "абсолютным оружием", как некогда зоопланктон миллиметрового размерного класса, спровоцировавший некогда вендский фитопланктонный кризис (см. главу 6-а).
По мнению В.В. Жерихина (1990), именно стрекозы полностью уничтожили характерную для карбона фауну крупноразмерных открытоживущих палинофагов типа диктионеврид (эта смена была одной из самых резких за всю историю класса), заставив крылатых насекомых специализироваться в двух направлениях. Одним вариантом было совершенствовать свой полет (попутно при этом уменьшаясь в размерах), а также тип метаморфоза - появление полного превращения позволяет спрятать червеобразную личинку и неподвижную куколку внутри субстрата. Эта линия эволюции привела в конечном счете к возникновению в начале мезозоя (триас) наиболее процветающих ныне отрядов - двукрылых и перепончатокрылых, а чуть позже - бабочек. Другой выход - перейти к скрытному образу жизни (например, внутри уже знакомой нам валежникообразной "подстилки" карбоновых лесов), превратив переднюю пару крыльев в крышеобразно складываемые жесткие надкрылья, защищающие от повреждений заднюю пару, которая и выполняет летательные функции; по этому пути пошли гриллоновые насекомые, сохраняющие неполный метаморфоз - тараканы, прямокрылые и их родственники, а из насекомых с полным превращением - жуки, самый большой из современных отрядов (более ста тысяч видов), появившийся в начале перми.
Хотя в карбоне уже существовали стрекозы и поденки, личинки их (в отличие от современных) были существами не водными, а наземными. Освоение насекомыми пресных вод началось лишь во второй половине следующего (пермского) периода, когда появились отряды, имеющие водную личинку - веснянки, ручейники, а также поденки современного типа (личинки же стрекоз перестали быть наземными лишь в мезозое). В этой связи В.В. Жерихин (1980) указывает на следующее обстоятельство. Как известно, смыв различных веществ (прежде всего - микроэлементов) должен сильно обеднять почвы водоразделов. В настоящее время подобное обеднение если не предотвращается, то заметно тормозится прямым выносом вещества из водоемов на сушу животными (например, азот и фосфор, смытые с суши в море, оказываются - по пищевым цепям - в организмах сперва рыб, затем рыбоядных морских птиц, а в конечном счете возвращаются на сушу в форме птичьего помета). В пресных водах эту функцию выполняют прежде всего насекомые, которые имеют водных личинок и имаго, способных к дальнему разлету из водоемов.
Что же касается карбона, когда насекомые с водными личинками, судя по всему, отсутствовали, то в те времена обеднение почв на водоразделах (если там вообще формировались почвы) должно было быть особенно сильным. Не исключено, что формирование в перми, и особенно в триасе, достаточно обильной фауны насекомых с водными личинками стало одним из тех факторов, которые изменили почвенную ситуацию на водоразделах и позволили растительности начать "наступление" на первичные пустыни. Важно подчеркнуть, что этот вынос микроэлементов насекомыми мог сыграть здесь роль первого толчка - дальше система будет развиваться с положительной обратной связью, ибо возникшая на водоразделах растительность сама является мощнейшим регулятором стока. Окончательно эта система могла оформиться в позднем триасе - когда появились двукрылые; именно такие их представители, как, например, комары-звонцы (Chironomidae) совмещают огромную биомассу со способностью к дальнему разлету (в том числе за счет пассивного переноса ветром).
В заключении остановимся на одном существенном отличии экосистем древних (палеозойских и мезозойских) озер от современных. Это полное отсутствие погруженных макрофитов, за исключением харовых водорослей (которые депонируют биогены почти на порядок хуже, чем покрытосеменные). Основными продуцентами там скорее всего были плавающие маты, причем в мезозое получили распространение водорослевые маты на каркасе из высших растений. В триасе это были плевромейи - крупные плавающие плауновидные (что-то вроде сильно увеличенного полушника), по виду напоминающие морской буй, где в роли верхней сигнальной лампочки выступает пучок листьев и спорангии; листья, скорее всего, плавали по поверхности воды, постепенно отгнивая с вершины [48]. На каркасе из этих плауновидных возникали плавающие острова из мелких водяных мхов и печеночников (типа любимой аквариумистами риччии), а снаружи все это обрастало зелеными водорослями и цианобактериями; на этих матах существовала богатая фауна беспозвоночных: в палеозое - сходные с многоножками растительноядные эвтикарциноиды, позже - ракообразные и насекомые.
Поскольку все фотосинтезирующие структуры были сосредоточены на поверхности озера (а дно было к тому же еще и затенено), гиполимнион почти всегда был асфиксным и безжизненным, а озера легко эвтрофицировались. Однако в непосредственной близости от плавающего мата концентрация кислорода в воде могла быть очень высока; возможно, именно этим объясняется присутствие в составе фауны эвтрофных (судя по составу отложений) мезозойских озер целого ряда групп насекомых, являющихся ныне реофилами (обитателями быстрых, богатых кислородом рек и ручьев). Кроме того, в составе этих фаун комбинируются как пресноводные формы, имеющие адаптации к водному образу жизни, так и наземные (которые могли "ходить пешком" по поверхности плавающего мата). Эти имевшие огромную биомассу и богатые животным белком "плавучие острова" могли составлять основу питания для многих позвоночных, включая и динозавров. Окончательно экосистемы такого типа исчезли лишь в кайнозое, когда на дне водоемов возникли заросли погруженных макрофитов из покрытосеменных (типа элодеи), резко увеличившие разнообразие и устойчивость пресноводных экосистем. Это и дало А.Г. Пономаренко основание разделить всю историю континентальных водоемов на два принципиальных этапа: первый - от докембрия до середины палеогена (когда основными продуцентами были маты, сперва прикрепленные, затем - плавающие), а второй - от середины палеогена доныне (когда эту роль стали играть погруженные макрофиты).


10. Эволюция наземных позвоночных (1): поздний палеозой - ранний мезозой. Анамнии и амниоты. Две линии амниот - тероморфная и завроморфная.
Мы с вами расстались с самыми первыми тетраподами (девонской ихтиостегой и родственными ей формами) когда те... Чуть было не сказал: "Делали первые шаги по суше", но нет - мы ведь теперь знаем, что существа те были чисто водными... Скажем лучше так, более осторожно: "Получили принципиальную возможность периодически покидать водную среду". Да и что они, собственно говоря, могли бы найти на той суше - кроме перегрузок из-за многократного увеличения собственного веса, теплового удара да смертоносного обезвоживания организма?.. Пищу? Какую пищу - в девонском-то периоде? В общем, в девоне целенаправленный "выход на сушу" был бы даже не авантюрой, а чем-то по разряду мазохизма. Есть пятипалая конечность, позволяющая при необходимости переползти из совсем уже пересохшей лужи в не совсем пересохшую - и ладно...
Ситуация принципиально изменилась с начала карбона, когда в уже знакомых нам "лесах-водоемах" возникла богатая фауна из амфибиотических и наземных членистоногих - паукообразные, многоножки, а потом и насекомые: за этот ресурс уже стоило побороться. Среди карбоновых амфибий появляются небольшие (менее 1 м), похожие на современных саламандр антракозавры, имеющие несомненные приспособления к наземной жизни и явно ориентированные на питание беспозвоночными (а не рыбой - как их более крупные родственники). Именно антракозавров считают предками рептилий [49]; первые рептилии - карбоновые капториниды - напоминали по внешнему виду крупных ящериц, причем, судя по строению их челюстного аппарата, они специализировались именно на питании насекомыми. Впрочем, не будем забегать вперед.
Чем объяснить итоговый эволюционный неуспех амфибий? Ведь этот класс процветал только в карбоновом периоде (причем - только на территории тогдашних тропиков, в Еврамерии: ни в Ангариде, ни в Гондване по сию пору не найдено ни единой косточки карбонового возраста [50]), когда у него не было конкурентов; во все же остальные времена они занимали сугубо подчиненное положение в экосистемах - как наземных, так и пресноводных. Судя по всему, амфибий сгубила даже не облигатная связь с водой (они не выработали яйца и размножаются икрой), а неисправимое несовершенство их дыхательной системы, предопределившее целую цепь пренеприятнейших анатомо-физиологических следствий. Давайте по порядку.
Из курса зоологии вы должны помнить, что лягушка не имеет ни ребер, ни диафрагмы. Поэтому она - в отличие от нас - неспособна делать вдох, увеличивая объем замкнутой грудной полости, и вынуждена нагнетать воздух в легкие крайне несовершенным способом: набирать его в ротовую полость, замыкать ее, а потом "проглатывать" воздух, поднимая дно ротовой полости и сокращая ее объем. Итак, легочное дыхание у амфибий развито слабо.
Слабость легочного дыхания не позволяет амфибиям освободить от дыхательных функций кожу. Об этом обычно упоминают в той связи, что земноводные должны всегда сохранять покровы влажными (именно в этой влаге и растворяется воздушный кислород, "всасываемый" затем кожей), а потому они навсегда прикованы к воде. Это верно - однако это еще полбеды. Хуже другое: не освободив от дыхательных функций кожу, невозможно изолировать друг от друга большой и малый круги кровообращения и отделить венозную кровь от артериальной. Появление легких у тетрапод привело к возникновению двух кругов кровообращения; при этом правая сторона сердца становится "венозной", а левая - "артериальной". У амфибий сердце трехкамерное - два предсердия и желудочек; у рептилий - формально! - тоже трехкамерное, но в желудочке возникает неполная продольная перегородка, делящая его на "венозную" и "артериальную" половины. В ходе дальнейшей эволюции перегородка становится полной, а сердце - четырехкамерным (хотя у крокодилов с птицами и у млекопитающих это происходит по-разному). У амфибий же кислород приносят в сердце вены, идущие не только от легких (малый круг) но и от кожи (большой круг), и потому создавать какую-либо перегородку между правой и левой половинами желудочка бессмысленно, а кровь в сердце всегда будет смешанной - артериально-венозной. Пока же кровь не разделена на артериальную и венозную, уровень энергетического обмена организма будет принципиально невысоким. К тому же при постоянно влажных покровах любое повышение температуры тела будет тут же сводиться на нет за счет поверхностного испарения - термическое охлаждение. Все это полностью закрывает амфибиям путь к достижению любых вариантов эндотермии ("теплокровности") [51] - с понятными эволюционными последствиями.
Из-за единственно доступного для амфибий способа наполнения легких ("проглатывания" воздуха - гулярное дыхание) необходимо сохранять "подчелюстной насос", поднимающий и опускающий дно ротовой полости. Размещение последнего требует совершенно специфической ("лягушачьей") формы черепа - очень широкой и приплюснутой. При этом челюстная мускулатура оказывается размещенной крайне невыгодным образом: ее можно подсоединить лишь к самому челюстному суставу, с задней его стороны; получающийся в результате рычаг будет крайне неэффективен - все равно, как если бы мы затворяли дверь, упираясь не в ручку, а около петель. Для того, чтобы развивать при помощи таких челюстей сколь-нибудь приличные усилия, приходится наращивать объем челюстной мускулатуры; в итоге эта мускулатура занимает практически все пространство черепа, попросту не оставляя места для мозговой коробки. То есть амфибии - существа принципиально "безмозглые", и это закрывает им путь к сложным формам поведения.
Отсюда понятно, как следует бороться (в эволюционном смысле) со всем этим комплексом неприятностей: надо радикально перестроить дыхательную систему. Именно анализируя переход от амфибий к рептилиям, Н.Н. Иорданский (1977) выдвинул свой принцип ключевого ароморфоза - изменение в одной системе органов, ведущее к целому каскаду последовательных прогрессивных перестроек всего организма.


Достаточно наладить нормальное легочное дыхание (путем изменения объема грудной полости), как приведенные выше цепочки начинают "раскручиваться" в обратную сторону. Убрав "подчелюстной насос", мы можем сделать череп высоким и узким, подвести жевательную мускулатуру к челюсти не сзади, а сверху (как у нас с вами), уменьшить - за счет улучшения рычага - ее объем и отдать освободившееся место под "мозги"; кроме того, такое расположение жевательных мышц позволит в дальнейшем не только удерживать схваченную добычу, но и пережевывать пищу (рисунок 37). Освободив кожу от дыхательных функций, мы получаем возможность разделить круги кровообращения и резко интенсифицировать обмен веществ. Эти инженерные решения вполне однозначны, равно как и необходимость одеть икринку особой оболочкой - амнионом, как бы создающей для зародыша маленький искусственный водоем и делающим его развитие независимым от водной среды; отсюда фундаментальное разделение позвоночных на "прикованных к воде" анамний (рыб и амфибий), и "истинно сухопутных" амниот - рептилий, птиц и млекопитающих). А вот дальше начинается интереснейший эволюционный выбор, когда вариантов - два, в обоих есть свои плюсы и свои минусы.
Главная проблема, которую нам предстоит решать теперь, когда осуществлен настоящий выход на сушу - это экономия воды. Возникает вопрос: как нам быть с кожей, доставшейся в наследство от амфибий - мягкой и влажной, богатой железами? Можно ее полностью заизолировать, создав на поверхности водонепроницаемый роговой слой - а можно лишь модифицировать, сохранив ее основные характеристики; оба решения вполне реализуемы, и каждое из них влечет за собою целую цепь физиологических следствий.
Создав сухую кожу с роговым покрытием, мы сводим к минимуму потери влаги: организм становится практически независимым от внешних источников воды (как одетые в "пустынные скафандры" герои фантастического романа "Дюна"). Однако за удобство надо платить.
Во-первых, необходимо перестроить выделительную систему. Почки амфибий функционально не отличаются от рыбьих и предназначены для выведения из организма избытка воды (которую тот постоянно "насасывает" за счет осмоса из гипотонической внешней среды). Проблема удаления конечного продукта белкового обмена - весьма токсичной мочевины CO(NH2)2 - решается в этом случае элементарно: ее просто растворяют в водяном потоке, который так и так постоянно "течет сквозь организм". Иное дело - когда мы начинаем экономить воду, потребляя ее по минимуму; легко создать канализацию в населенном пункте, стоящем на реке, а что делать, если в твоем распоряжении лишь артезианский колодец? Тогда "почки выведения" необходимо заменить на "почки сбережения", призванные выводить во внешнюю среду как можно меньше воды. При этом приходится менять конечный продукт белкового обмена с мочевины на менее токсичную мочевую кислоту - а этот дополнительный "технологический цикл" весьма энергоемок [52].
Во-вторых (и это даже более важно), сухая, лишенная желез кожа создает большие трудности с терморегуляцией - а при жизни на суше, где обычны резкие температурные перепады, эта проблема одна из важнейших. При голых, ороговевших покровах равно затруднены и теплоизоляция (в холод), и теплосброс (в жару) - потому для этой эволюционной линии путь к достижению гомойотермии (поддержанию постоянной, независимой от внешней среды температуры тела) если и не закрыт полностью, то очень сильно затруднен.
Если же мы решим не гнаться за экономией воды и оставим кожу железистой, не ороговевшей, то перед нами откроется множество новых возможностей. Эти кожные железы можно преобразовать в самые разнообразные структуры. Можно превратить их в волоски, выполняющие осязательные функции, а сделав эти волоски достаточно густыми, создать теплоизолирующий покров - шерсть. Можно превратить их дополнительный орган выделения - потовые железы, которые являются еще и терморегулятором (пот, испаряясь, охлаждает поверхность тела); можно, наконец, изменить состав их выделений, превратив эти железы в млечные, и выкармливать с их помощью детенышей. Как легко видеть, в этой эволюционной линии, с ее терморегуляторными возможностями, появление гомойотермии просто-таки напрашивается - да так оно и было на самом деле. Правда, по степени зависимости от источников воды эти существа будут не слишком превосходить амфибий - но ведь за всё в этом мире приходится платить... А с другой стороны - раз уж внутренняя среда нашего организма все равно будет существовать как бы в постоянном водяном токе, нет нужды радикально перестраивать почки на "водосберегающую технологию" и возиться со сменой конечного продукта азотного обмена!


Что же это за "две эволюционные линии"? Традиционный взгляд на эволюцию рептилий - он и поныне отражен во многих учебниках - предполагает, что от каких-то антракозавров (здесь часто поминают сеймурию, имевшую уже рептилийное строение челюсти и грудной клетки, пригодной для реберного дыхания, но еще не расставшуюся с водой - личинки ее так и оставались "головастиками" с наружными жабрами) происходит некий гипотетический "общий предок пресмыкающихся", который обладает уже всем набором рептилийных признаков (водонепроницаемой кожей, почками сбережения и т.д.). От него-то и берут начало основные эволюционные ветви этого класса - анапсиды, синапсиды диапсиды и эвриапсиды; этим группам зачастую придают статус подклассов. Они выделены на основе того, каким способом в каждом из них трансформировался исходный стегальный (крышевидный) череп лабиритодонтов (рисунок 38). У анапсид (сюда относятся черепахи и ряд вымерших групп, например, парейазавры) сохраняется исходный тип черепа - массивный, лишенный облегчающих конструкцию отверстий. У синапсид - "зверообразных ящеров" , чьи зубы были дифференцированы по форме и функциям (пеликозавров и более продвинутых терапсид, которых традиционно считают предками млекопитающих) возникает одно височное окно, от краев которого отходят челюстные мышцы, и возникает единственная скуловая дуга. У диапсид же височных окон возникает два, и соответственно, две скуловых дуги - верхняя и нижняя; к этой группе принадлежат большинство рептилий, как современных (ящерицы со змеями, гаттерии и крокодилы), так и вымерших (динозавры, птерозавры). К эвриапсидам относят несколько вымерших морских групп (ихтиозавров, плезиозавров и родственных им нотозавров и плакодонтов); их черепа имеют единственное височное окно, но образуется оно иным образом, чем у синапсид [53]. Необходимо заметить, что черепа млекопитающих и птиц могут быть отнесены к, соответственно, синапсидному и диапсидному типам - что отражает происхождение этих высших тетрапод.
Однако еще в середине прошлого века Т. Гексли, друг и сподвижник Ч. Дарвина, провел анатомическое сравнение четырех классов тетрапод, дабы установить - кто чьим предком является. Глубокое сходство птиц и рептилий уже в те времена не вызывало особых сомнений; когда говорят, что "птицы - всего лишь продвинутая и сильно специализированная группа рептилий", это, в общем и целом, соответствует истине. Гексли, однако, обратил внимание и на куда менее очевидное, но весьма существенное сходство млекопитающих (маммалий) с амфибиями. Сходство это он видел в строении кожи - мягкой и богатой железами, почек, выделяющих мочевину (у рептилий с птицами почки выделяют мочевую кислоту), и в наличии двух затылочных мыщелков, которыми череп сочленяется с позвоночником (у рептилий с птицами - один). Самыми серьезными, однако, Гексли счел различия в строении кровеносной системы: у амфибий имеются две дуги аорты - правая и левая, у рептилий и птиц сохраняется только правая дуга, а у млекопитающих - только левая. То есть - "вывести" маммальную кровеносную систему из рептилийной (где левая дуга уже редуцирована) принципиально невозможно. На этом основании он заключил, что предками млекопитающих не могут быть рептилии - по крайней мере, ныне живущие, - и маммалии должны вести свое происхождение прямо от амфибий.


Так вот, по наиболее современным представлениям (они, как часто бывает в науке, могут считаться развитием на новом уровне взглядов Гексли), в нескольких (минимум - в двух) эволюционных линиях амфибий независимо выработался синдром [54] рептилийных признаков и был достигнут рептилийный уровень организации. То есть "рептилии" - это категория не вертикальной, а горизонтальной классификации; это не таксон, члены которого связанны единством происхождения, а града - уровень организации, достигаемый тетраподами при утере ими облигатной связи с водой (рисунок 39). Существование двух независимых эволюционных ветвей амниот - тероморфной (от греческого "терион" - зверь) и завроморфной (от "заурос" - ящер), разошедшихся еще на уровне амфибий и венчаемых: первая - млекопитающими, а вторая - птицами и динозаврами, сейчас практически общепризнано [55]. Собственно говоря, вся трехсотмиллионолетняя история наземных тетрапод - это история состязания тероморфов с завроморфами, где эволюционный успех сопутствовал то одним, то другим.
Первыми такого успеха добились тероморфы. Появившиеся еще в позднем карбоне пеликозавры - удивительные создания, многие из которых имели "парус" из остистых отростков позвонков (рисунок 40, а) - составляли в ранней перми 70% всех амниот. Мощные клыки и непропорционально большая голова свидетельствуют о том, что пеликозавры были изначально ориентированы на питание крупной добычей; они были первыми хищными (в смысле - плотоядными, а не насекомоядными) наземными существами. Тем интереснее то обстоятельство, что многие пеликозавры переходят к растительноядности - первый опыт фитофагии среди наземных позвоночных! Последнее - чрезвычайно важно, ибо дефицит потребителей растительной массы в континентальных экосистемах должен был к тому времени стать просто угрожающим.
Дело в том, что сейчас основными фитофагами на суше являются насекомые, но первоначально они, как мы помним из предыдущей главы, только "снимали сливки" - потребляли одни высококалорийные генеративные части растений (пыльцу и семезачатки). В перми насекомые освоили питание соками растений, высасывая их при помощи хоботка из проводящих пучков (цикады и родственные им формы из отряда полужесткокрылых), а также древесиной, уже подвергшейся первичному грибному разложению (жуки), однако питаться низкокалорийными живыми вегетативными тканями растений они стали лишь в мезозое. В карбоне (и даже еще раньше, в девоне) существовали другие потребители этого - прямо скажем, не особо привлекательного - ресурса: крупные двупарноногие многоножки; именно ими, как считают, оставлены погрызы на ископаемых листьях из палеозойских отложений. Пик разнообразия и обилия этих членистоногих приходился на поздний карбон, а затем все они бесследно исчезли (возможно, разделив судьбу гигантских насекомых - см. предыдущую главу); эту-то "вакансию" и заполнили первые позвоночные-фитофаги. Именно в раннепермских "пеликозавровых" сообществах впервые складывается нормальное для современности численное соотношение между растительноядными и хищниками (до того все тетраподы были либо рыбоядными, либо насекомоядными - то есть хищниками, консументами второго порядка).
Мы уже говорили о том, что анатомия тероморфов просто-таки подталкивает их к различного рода эволюционным экспериментам с активной терморегуляцией. И хотя пеликозавры, без сомнения, были существами вполне "холоднокровными" (пойкилотермными) и метаболизм имели еще типично рептилийный, первые опыты по части температурного контроля начались уже на этом уровне. У многих из них возникает "парус" - высокие остистые отростки позвоночника, заключенные в единую пластину из мягких тканей; в бороздах у основания отростков проходили крупные кровеносные сосуды. Парус, имеющий огромную поверхность при малом объеме, служил, как сейчас считают, для быстрого поглощения или отдачи тепла телом; рассчеты показали, что особь пеликозавра массой 200 кг с парусом нагревается с 26њ до 32њ за 80 мин - против 205 мин без паруса. По всей видимости, это позволяло пеликозаврам активизироваться по утрам значительно раньше добычи или других хищников сравнимого размера; с другой стороны, он мог способствовать рассеиванию тепла в полуденное время, оберегая животное от перегрева. Характерно, что парус возникал как в хищных, так и в растительноядных группах пеликозавров - то есть многократно и независимо; в дальнейшем сходные структуры изредка появлялись у динозавров (опять-таки как у хищных - спинозавр, так и у растительноядных - стегозавр), однако в целом такой способ терморегуляции оказался явно тупиковым.
По иному решили эту проблему более продвинутые тероморфы из отряда терапсид, появившиеся в поздней перми. Среди них были и специализированные растительноядные формы - вроде дицинодонтов, достигавших размеров быка и имевших выступающие "моржовые" клыки в верхней челюсти, и крупные хищники - такие, как горгонопсиды, чем-то похожие на саблезубого тигра (рисунок 40, б и в). Еще недавно всех их считали просто "ящерами" - ну, зубы там дифференцированы, экая важность! - и именно в таком виде они обычно изображены в книжках по палеонтологии.


Сейчас, однако, полагают, что продвинутые терапсиды гораздо более походили на млекопитающих: доказано, что они, в отличие от прочих рептилий, имели развитое обоняние, слюнные железы и жесткие "усы"-вибрисы - осязательные волоски на морде (это можно установить исходя из того, как проходили поверхностные кровеносные сосуды черепа), а также "маммальное" строение поясов конечностей (об этом - чуть ниже). Это были довольно "башковитые" создания - их коэффициент цефализации (отношение веса мозга к весу тела) заметно выше, чем у современных им завроморфов. Предполагают, что по уровню метаболизма эти животные не уступали наиболее примитивным млекопитающим - однопроходным (утконос и ехидна); судя по всему, высшие терапсиды откладывали яйца, а детенышей выкармливали выделениями специальных желез - в точности, как однопроходные. Они были почти несомненно покрыты шерстью (шерсть - это не что иное, как "расползшиеся" на всю поверхность тела и ставшие достаточно густыми осязательные вибрисы) - а значит, были теплокровными: иначе зачем нужен теплоизолирующий покров? [56] Именно в одной из групп высших терапсид - цинодонтов (рисунок 40, г) - начался в следующем, триасовом, периоде процесс, названный "параллельной маммализацией" (см. главу 11) и приведший в конечном счете к возникновению настоящих млекопитающих.
А что же вторая, завроморфная, ветвь амниот? Они появились в том же позднем карбоне, что и тероморфы, но на протяжении всего палеозоя пребывали на вторых ролях. Правда, растительноядные анапсиды парейзавры (рисунок 40, г) стали заметным элементом позднепермских экосистем, но в целом группа занимает явно подчиненное положение... И вот в начале мезозоя завроморфы берут реванш - да какой! На протяжении триаса представители тероморфной линии оказываются вытесненными на глубокую перифирию эволюционной сцены, а их места занимают завроморфы-диапсиды (рисунок 41); последние к тому же осваивают такие ниши, которые до сих пор амниотам даже не снились - море и воздушное пространство. Триасовый упадок тероморфов, совсем уж было подошедших к тому, чтобы превратиться в маммалий, и внезапный расцвет "настоящих ящеров" - одна из самых интригующих загадок палеонтологии; В.А. Красилов удачно назвал эту ситуацию "мезозойским зигзагом". Упрощенные объяснения типа "иссушения климата" смотрятся тут абсолютно неубедительными - хотя бы потому, что пермь была временем даже более аридным, чем триас...


Появление в это время (триас) целого ряда морских групп, эвриапсид - дельфиноподобных ихтиозавров, более похожих на ластоногих плезиозавров (всем хорошо известны эласмозавры с очень длинной шеей и маленькой головой - "змея, продетая сквозь черепаху", но в юре существовали и короткошейные плиозавры с черепом длиною до 3-х метров), а также менее известных нотозавров и плакодонтов, несколько похожих на тюленей (рисунок 42, а-г) - вполне логично следует из рептилийной физиологии. Когда говорят, что "змея по вкусу больше всего похожа на цыпленка" - это чистая правда: у завроморфов (к коим принадлежат змеи) большая часть мускулатуры представляет собой "белое мясо", как грудные мышцы курицы. Белая мускулатура бедна (по сравнению с "красной") миоглобином и митохондриями, и энергоснабжение мышечных сокращений в ней достигается в основном за счет гликолитического (анаэробного) расщепления глюкозы до молочной кислоты. Для этой реакции не нужен кислород, а скорость ее мало зависит от температуры - что особенно важно для животного, не обладающего гомойотермией. Однако (повторим в который раз!) за любое преимущество надо платить. Накапливающаяся в результате гликолиза молочная кислота - метаболический яд, и буквально через 1-2 минуты интенсивной работы белая мускулатура практически теряет способность к дальнейшим сокращениям; самопроизвольный распад молочной кислоты (и восстановление работоспособности) требует нескольких часов. Белые мышцы принципиально не годятся для продолжительной работы.
В богатых миоглобином красных мышцах, составляющих основу мускулатуры маммалий, ситуация принципиально иная. Они содержат огромное количество митохондрий (собственно, они и придают этой ткани красный цвет), и в них молочная кислота - лишь промежуточный продукт, который затем в митохондриях "дожигается" кислородом до углекислого газа и воды с выделением огромного количества энергии. Казалось бы, выгодно во всех отношениях (так что непонятно, зачем вообще кто-то сохраняет белые мышцы) - ан нет: реакции кислородного дыхания требуют повышенной температуры среды. Мало того, что для этого еще нужно выработать гомойотермию, так потом еще почти весь прибыток энергии придется потратить на собственный обогрев! Не зря млекопитающее потребляет (в покое) примерно в 10 раз больше пищи, чем рептилия равного с ним веса - а пищу эту, между прочим, надо еще поймать... Одним словом - "мамы всякие нужны, мамы всякие важны": белая мускулатура хорошо (и энергетически дешево) работает "на рывке" [57], а красная - при длительных постоянных нагрузках; животное с белыми мышцами - хороший "спринтер", а с красными - "стайер".


Так вот, возвращаясь к появлению в триасе разнообразных морских рептилий (кстати: именно тогда сделали попытку освоить море и амфибии-лабиринтодонты). Многие исследователи (например, Р. Кэрролл) полагают, что переход к водному образу жизни происходит у низших амниот особенно легко именно в силу низкой интенсивности их метаболизма, способности выдерживать недостаток кислорода (из-за использования анаэробных процессов для работы мышц) и низкой температуры тела (не выше, чем у окружающей воды). Иными словами - рептилии исходно предрасположены к обитанию в водной среде. Судя по наблюдениям над современными морскими игуанами, передвижение и питание в воде не требует от них структурной или физиологической перестройки; более того - при водной локомоции метаболические затраты этих ящериц составляют лишь четверть от тех, что потребны для перемещения по суше (благо тело в воде ничего не весит - по закону Архимеда) [58]. Рептилии без проблем становятся вторичноводными всякий раз, когда жить в воде становится выгоднее с точки зрения обилия пищи и/или отсутствия врагов и конкурентов. Так, в юре возникли морские крокодилы (ноги их превратились в настоящие ласты, и имелся специальный хвостовой плавник, как у ихтиозавра), в раннем мелу - морские черепахи, близкие к нынеживущим, а в позднем мелу - мозозавры, исполинские (до 12 м длиной) морские ящерицы-вараны (рисунок 42, д-е).


На суше ситуация складывется принципиально иначе, чем в море: тут белая мускулатура создает для завроморфов серьезные проблемы. Мы уже упоминали о различиях в строении поясов конечностей у тероморфов и завроморфов. Конечности могут быть расположены сбоку от тела (такое их положение называется латеральным), или подведены под него (парасагитально); в первом случае бедренная (или плечевая) кость направлена параллельно земле, а во втором - вертикально (рисунок 43, а). Отсюда следуют различия в типе локомоции: рептилии "враскорячку" ползают на брюхе (отсюда происходит русское название группы - "пресмыкающиеся"), тогда как у маммалий тело высоко приподнято над землей, а конечность, двигаясь в плоскости, параллельной оси тела, способна делать широкий шаг (рисунок 43, б). Весьма существенно то, что при парасагитальном положении конечностей (маммальный вариант) вес тела принимают на себя - продольно! - кости скелета конечностей, так что мышцам надо лишь не давать этим "подпоркам" отклоняться от вертикального положения; при латеральных же (рептилийных) конечностях тело "подвешено" на самих мышцах, и животное как бы постоянно выполняет упражнение "отжимание от пола" - удовольствие ниже среднего.
Казалось бы, маммальное строение поясов конечностей безусловно "лучше". В действительности же свои плюсы есть и в рептилийном варианте: ведь если мускулатура у тебя по преимуществу белая, ориентированная "на рывок", то проще большую часть времени проводить, расслаблено лежа на брюхе, и лишь изредка совершать броски за добычей. При маммальной же постановке конечностей приходится постоянно поддерживать тело на весу; это во-первых практически исключает саму возможность использовать белую мускулатуру (которая "устает"), а во-вторых, заставляет тратить много энергии вхолостую - мы помним, что млекопитающее в покое расходует в покое примерно в 10 раз больше энергии, чем рептилия равного размера. Однако когда все плюсы и минусы просуммированы, оказывается, что на суше для завроморфов (с их белой мускулатурой и латеральной конечностью) открыты лишь "профессии" подстерегающего хищника или пассивно защищенного - панцирем или слоем воды - крупного фитофага; остальные экологические ниши оказываются в распоряжении "теплых", активных, высокоподвижных тероморфов.
Ситуация поменялась в триасе, когда на эволюционную арену вышла группа рептилий, являющая собою подлинный венец всей завроморфной линии эволюции - архозавры. К этому подклассу принадлежат крокодилы и вымершие текодонты, динозавры и птерозавры; прямо от него ведут свое происхождение птицы. Из курса зоологии вы помните, что архозавры (о строении которых мы судим в основном по крокодилам) обладают целым рядом уникальных для рептилий продвинутых черт: у них уже полностью разделены правый и левый желудочки сердца, зубы их альвеолярного типа - сидящие в отдельных ячейках (что позволяет аллигаторам иметь "клыки" до 5 см длиной), возникает вторичное нёбо - дополнительная костная перемычка под первичным нёбом, отделяющая дыхательные пути от ротовой полости. Однако для триасовой победы архозавров над тероморфами наиболее существенным оказалось, по всей видимости, именно видоизменение конечностей и их поясов (в этом смысле крокодилы как раз не показательны - их конечности очень примитивны, близки к предковому для архозавров типу), которое весьма неожиданным образом разрешило проблему скоростной локомоции.
Дело в том, что по ряду анатомических причин (они были детально обсуждены еще А. Ромером в 1922 г.) перевести в парасагитальное положение задние конечности, которые причлененны к позвоночнику, намного проще, чем передние, соединенные с грудиной. Достаточно сказать, что тероморфы сумели "подвести под тело" задние ноги еще в перми (у горгонопсид), а вот полная парасагитальность выработалась в этой линии много позже - лишь у триасовых цинодонтов. Итоговая же скорость передвижения "до-цинодонтного" тероморфа, как легко догадаться, все равно лимитируется именно "медленными" - латеральными - передними конечностями.
Архозавры появивлись в поздней перми, почти одновременно с терапсидами, и одновременно же с последними выработали парасагитальность задних конечностей. А вот дальше архозавры, вместо того, чтобы возиться с преобразованием пояса передних конечностей, вообще отказались от их использования для движения, и выработали принципиально новый тип локомоции - бипедальный (двуногое хождение); о потенциальных скоростных возможностях такого двуногого диапсида дают некоторое представление современные страусы... Бипедальность тоже требует ряда серьезных анатомических перестроек (прежде всего - создания опорного таза с консолидированными позвонками крестцового отдела), однако это, как ни странно, оказалось легче, чем решить простенькую на первый взгляд задачу снятия ограничений в подвижности плечевого сустава - на что тероморфам пришлось потратить почти 100 миллионов лет [59].
Так в триасе возникла жизненная форма высокоскоростного бипдального существа; именно "двуногость" открыла динозаврам путь к 130-миллионолетнему владычеству над сушей (есть много четвероногих растительноядных динозавров, но все они произошли от двуногих предков, "опустившихся на четвереньки"). Среди наземных хищников в крупном размерном классе эта жизненная форма стала вообще единственной и, единожды сформировавшись, практически не менялась на протяжении всего мезозоя (главный персонаж "Парка юрского периода" - позднемеловой динозавр Tyranosaurus rex - внешне мало чем отличается от крупного триасового текодонта Ornithosuchus). Более того: впоследствии именно бипедальная локомоция позволила двум линиям архозавров - птерозаврам и птицам - независимо преобразовать переднюю конечность в машущее крыло и освоить активный полет. Впрочем, "Это уже совсем другая история"...


11. Эволюция наземных позвоночных (2): поздний мезозой. Завроморфный мир. Маммализация териодонтов. Динозавры и их вымирание.
Итак, мы знаем, что с самого момента появления истинно наземных позвоночных - амниот - произошло их разделение на две эволюционные ветви: тероморфов и завроморфов. Обе группы возникли одновременно, в позднем карбоне, но первоначальный успех оказался на стороне тероморфов (с их неороговевшими покровами, благоприятствующими активной терморегуляции, относительно большим мозгом и высоким уровнем метаболизма); они доминировали в позднем карбоне и перми. Однако в триасе высшие завроморфы - архозавры - одержали верх над высшими тероморфами - терапсидами, - начисто вытеснив последних из крупного размерного класса. "Изобретенная" архозаврами жизненная форма бипедального хищника оказалась столь совершенной, что на протяжении всего мезозоя наземных хищников иного типа не возникало вовсе, а крупный размерный класс оказался полностью закрыт и для тероморфов, и для прочих (не-архозавровых) завроморфов. Судя по всему, мы тут опять имеем дело со случаем "абсолютного оружия" (они уже знакомы нам по ситуациям с вендским зоопланктоном и карбоновыми стрекозами). Терапсидам удалось-таки "выставить на конкурс" свою модель высокоподвижного хищника (с двумя парами парасагитальных конечностей, с красной мускулатурой и частичной теплокровностью), однако они поспели "к шапочному разбору", когда экологические ниши были уже поделены.


Эволюция архозавров выглядит так (рисунок 44). От пермо-триасовых текодонтов обособились к концу триаса все остальные отряды: крокодилы, птерозавры и два отряда динозавров - ящеротазовые (Saurischia) и птицетазовые (Ornitischia). К ящеротазовым относятся такие на первый взгляд несхожие друг с другом формы как хищные двуногие тероподы (размером от тиранозавра - 6 м высотой, самый крупный наземный хищник всех времен - до только что описанного прекурзора, очаровательного создания величиной с ворону) и четвероногие растительноядные завроподы - самые большие наземные животные (диплодок достигал 26 м в длину при весе 30 тонн) [60]. К птицетазовым принадлежат исключительно растительноядные формы, по большей части крупные и очень крупные: двуногие гадрозавры (утконосые динозавры) и игуанодоны, и вторично-четвероногие анкилозавры (панцирные динозавры), стегозавры и цератопсиды (рогатые динозавры) (рисунок 45).


От мелких хищных теропод позднее произошли птицы. Следует отметить, что текодонты еще в триасе "изобрели" практически все жизненные формы, которыми архозавры пользовались потом на протяжении всего мезозоя: хищные бипедальные орнитозухии принципиально не отличались от теропод, растительноядные этозавры с мощным панцирем весьма походили на четвероногих птицетазовых, а полуводные фитозавры - это просто крокодил-крокодилом; подчеркнем - указанные пары (например, фитозавр - крокодил) не связаны сколь-нибудь тесным родством, речь идет именно о реализации определенных экологических стратегий (рисунок 46).


Когда говорят о структуре мезозойского сообщества наземных позвоночных, сразу замечают, что крупный размерный класс (Е. Олсон назвал его "доминантным сообществом") в нем был полностью сформирован архозаврами: и фитофаги, и хищники в нем представлены сперва текодонтами, потом динозаврами. Реже обращают внимание на другое обстоятельство: малый размерный класс ("субдоминантное сообщество") оказался для архозавров почти закрытым - ровно в той же степени, как крупный - для тероморфов. Среди малоразмерных существ (менее 1 метра) доминировали териодонты (и их прямые потомки - млекопитающие), а на вторых ролях выступали низшие диапсиды - ящерицы и клювоголовые (ныне от этой группы уцелела лишь гаттерия); питались они насекомыми и, реже, друг дружкой - фитофагии в малом размерном классе не было вовсе. Итак, высшие завроморфы (динозавры) и высшие тероморфы (маммалии) с самого начала сформировали "параллельные миры", практически не взаимодействующие между собой.
Очень интересно сопоставить структуру сообщества наземных, вторично-водных и летающих позвоночных. Если на суше господствовали амниоты с самым активным метаболизмом - тероморфы и архозавры (последние имели четырехкамерное сердце и, как мы увидим дальше, по-своему решили проблему гомойотермии), то водная среда оказалась вотчиной рептилий с низким уровнем обмена и белой мускулатурой, ориентированной на бескислородные процессы. Для архозавров она оказалась малоподходящей (водный образ жизни ведут лишь самые архаичные их представители, фитозавры и крокодилы), зато здесь процвели низшие диапсиды (эвриапсиды) и анапсиды: ихтиозавры, плезиозавры, плакодонты, морские черепахи; нет такой группы диапсид, которая не "делегировала" бы своих представителей в воду - были даже водные клювоголовые, плеврозавры. Все водные рептилии - хищники (среди них не было не только фитофагов, но даже и планктоноядов вроде усатых китов или китовой акулы), и все крупные - заметно крупнее своих сухопутных предков (если таковые известны). Весьма показательны в этом последнем отношении "ящерицы" (в широком смысле), на суше практически никогда не выходившие из малого размерного класса, но породившие гигантских морских мозозавров и пресноводных хампсозавров (жизненная форма "крокодил"). Начиная с триаса водные рептилии оккупировали верхние трофические этажи морских экосистем, полностью вытеснив оттуда и рыб, и головоногих - эти предыдущие "владыки морей" служили им основной пищей. Ситуация изменилась лишь в начале мела, когда появились акулы современного типа; возможно, именно они конкурентно вытеснили самых "рыбообразных" из рептилий - ихтиозавров.
С освоением воздуха картина, как и следовало ожидать, была обратная (по сравнению с морем): здесь преуспели именно высшие архозавры, имевшие самый активный метаболизм - птицы и птерозавры, которые тоже почти наверняка были теплокровными. Так, мелкий птерозавр Sordes pilosus (что в переводе с латыни означает "нечисть волосатая") был покрыт чем-то вроде волосяного покрова не вполне ясной природы; трудно представить себе, зачем он мог понадобиться, если не для теплоизоляции В пользу теплокровности птерозавров может косвенно свидетельствовать и строение их костей, полых и несущих перфорации - как у птиц, у которых кости пронизаны воздушными мешками (обеспечивающими бесперебойность дыхания во время машущего полета). Если дыхательная система в этих двух группах построена аналогичным образом, то и интенсивность обмена у птерозавров должна быть очень высока.


Самое интересное, что в триасе (и даже в конце перми) низшие диапсиды - "ящерицы" совершили целый ряд попыток завоевания воздуха; некоторые из этих попыток были крайне экзотичны (рисунок 47, а-в), однако всё это были варианты планирующего полета: на активный, машуший, полет у этих рептилий явно не хватает энергетики. Появившиеся в конце триаса воздушные архозавры - птерозавры - разом пресекли эти неуклюжие потуги низших диапсид. Первыми птерозаврами были хвостатые рамфоринхи, размером от воробья до вороны; в дальнейшем птерозавры становились все более крупными (птеродактили достигали размеров орла, а их верхнемеловые представители, птеранодоны, достигали в размахе крыльев 8 м - самые большие летающие существа всех времен [61]), и наверняка перешли к парящему полету, вроде современных кондоров. Исчезновение в конце юры мелких высокоманевренных рамфоринхов (хвост летающему существу нужен как противовес для разворотов с малым радиусом) с машущим полетом, после чего остались лишь крупноразмерные "живые планеры" - птеродактили, судя по всему, было напрямую связано с появлением в это время птиц; в итоге в воздушном сообществе между птерозаврами и птицами происходит такое же размежевание по размерным классам, как и в наземном - между динозаврами и маммалиями. Рамфоринхи (судя по содержимому их желудков) были частью насекомоядными, частью рыбоядными - что-то вроде современных зимородков (рисунок 48); в дальнейшем рыбоядность стала для птерозавров "генеральной линией" - недаром почти все их скелеты найдены в мелководных морских отложениях [62].


Итак, в море господствуют крупные рептилии из числа низших завроморфов с "холодным" метаболизмом, в воздухе - относительно мелкие и теплокровные высшие архозавры. А что же "владыки суши" - динозавры? Вопрос об их возможной теплокровности дискутировался давно. В последнее время большинство палеонтологов сходятся на том, что интенсивность обмена у динозавров может быть и не достигала птичьей или маммальной, но заметно превышала таковую "обычных" рептилий. Во всяком случае, ранние представления о динозаврах как о массивных малоподвижных существах отошли в прошлое, и ужасные тероподы-велоцерапторы из "Парка юрского периода", напоминающие своим поведением крупных нелетающих птиц, судя по всему, вполне соответствуют реальности.
У динозавров тело было приподнято над землей гораздо более, чем у любых современных рептилий с их широко расставлеными в стороны конечностями. Об этом свидетельствуют, в числе прочего, их узкие следовые дорожки - как у маммалий и птиц. Иногда указывают на то, что нести многотонные тела динозавров на не до конца выпрямленных ("раскоряченных" по-рептильному) конечностях просто невозможно - надо, чтобы вес принимали на себя не мышцы, а вертикально поставленные кости (см. выше). Это верно, но все-таки это, пожалуй, не причина, а следствие: ведь "прямохождение" выработалось уже у самых первых динозавров - небольших существ с комплекцией кенгуру, перед которыми проблема избыточного веса еще не стояла. Скорее наоборот: само происхождение динозавров было связано с общей активизацией обмена веществ. Это открыло им путь к парасагитальности (для нее, как мы помним, необходима продолжительная мышечная активность; следовательно - красная мускулатура, следовательно - аэробный метаболизм и теплокровность, и т.д.), а уже парасагитальность, в свою очередь, позволила наращивать размеры тела аж до завроподных тридцати тонн.
Итак, активность метаболизма динозавров была наверняка выше обычного "рептильного"; были ли, однако, эти существа по-настоящему теплокровными? Весьма интересны в этом плане данные о гистологическом строении их костей.
Есть два важных различия между костями динозавров и крупных млекопитающих, с одной стороны, и прочих рептилий - с другой. У первых двух практически незаметны линии нарастания (вроде "годичных колец"), обычные для типичных рептилий; отсутствие их свидетельствует о более постоянной внутренней среде, свойственной теплокровным животным. Кроме того, у динозавров и млекопитающих намного выше доля вторичной костной ткани, связанной с многочисленными гаверсовыми каналами, в которых расположены кровеносные сосуды; это свидетельствует о более интенсивном метаболизме, приводящем к убыстрению круговорота минеральных веществ между костями и тканевыми жидкостями. Однако доводы эти отнюдь не бесспорны. Так, наиболее близкими к млекопитающим по строению костей оказались исполинские завроподы, физиологически явно весьма далекие от маммалий, тогда как небольшие тероподы типа велоцираптора (для которых как раз есть все основания подозревать теплокровность) имеют типично рептильную костную ткань. Типично рептильные кости были и у мелких высших терапсид, наверняка близких по своему метаболизму к примитивным млекопитающим. Кости крупных крокодилов же перестраиваются по мере роста, хотя это вполне "холоднокровные" животные.
Другая группа доводов - экологическая. Если динозавры приближались по уровню метаболизма к маммалиям, то и пищи им требовалось примерно в 10 раз больше, чем рептилиям сходного размера - что должно отражаться в соотношении биомассы хищников и их жертв. В сообществах пойкилотермных палеозойских тетрапод это соотношение близко к 1:1, тогда как в "динозавровых" сообществах мезозоя доля хищников (по биомассе) составляет около 5% - как и в современных сообществах млекопитающих. На это резонно возражают, что существуют местонахождения динозавров, где хищники преобладали по численности. С другой стороны, во многих современных сообществах, где верхушку трофической пирамиды формируют не маммалии, а рептилии (гигантский варан с острова Комодо или змеи в пустынях) биомасса хищника составляет менее 10%. Да и вообще расчеты показывают, что если бы "драконы" вроде тиранозавра обладали таким же обменом, что и теплокровные хищники (и, соответственно, таким же аппетитом), то на их содержание не хватило бы всех ресурсов экосистемы...
Ныне большинство исследователей полагает, что по своему метаболическому режиму динозавры занимали не просто промежуточное положение между "теплокровными" и "холоднокровными" животными, но принципиально отличались от обоих. Наблюдения над крупными современными рептилиями показали, что если животное имеет приведенный размер тела более 1 м (а именно таковы были почти все динозавры), то в условиях ровного и теплого (субтропического) климата с малыми суточными колебаниями температуры оно вполне способно поддерживать постоянную температуру тела выше 30њ: теплоемкость воды (из которой на 85% состоит тело) достаточно велика, чтобы оно просто не успевало охладиться за ночь. Главное - эта высокая температура тела обеспечивается исключительно за счет поступления тепла извне, безо всякого участия собственного метаболизма (на что млекопитающим приходится тратить 90% потребляемой ими пищи). Итак, животное с размерами, свойственными большинству динозавров, может достигать той же степени температурного контроля, что и млекопитающие, сохраняя при этом типично рептилийный уровень метаболизма; это явление Дж. Хоттон (1980) назвал инерциальной гомойотермией. Судя по всему, именно инерциальная гомойотермия (вкупе с бипедальностью) и сделала динозавров царями мезозойской природы.
Так что же, инерциальная гомойотермия - это все преимущества рептилийного обмена плюс все преимущества маммального обмена, и никаких недостатков? Увы - так не бывает. Дело в том, что инерциальная гомойотермия возможна лишь в строго определенном климатическом режиме. Для ее поддержания необходим очень ровный и теплый климат, практически без перепада температур (как сезонного, так и суточного): понятно, что если существуют периоды сколь-нибудь существенного охлаждения, то термическая инерция тут же начинает работать против вас. Климат этот должен быть теплым, но не чрезмерно жарким: при такой физиологии обеспечивать теплосброс чрезвычайно трудно, и в нынешнем тропическом климате можно с легкостью помереть от теплового удара (известно, какие проблемы создает теплосброс для крупных млекопитающих вроде слонов). Именно такой ровный теплый климат ("вся Земля - сплошные субтропики") и царил на протяжении всего мезозоя, который, как мы помним, был термоэрой. Однако термоэры - как и всё на свете - имеют обыкновение кончаться...
Обсуждаемая нами проблема имеет еще один аспект - связь теплокровности с фитофагией. Обычно полагают, что хищник по сравнению с фитофагом всегда будет существом более высокоорганизованным - и мозгов у него побольше, и обмен поинтенсивнее... Так - да не совсем. Дело в том, что усваивать мясо - "не просто, а очень просто", а вот извлекать что-то полезное из принципиально низкокалорийных растительных кормов - это действительно "высокая технология", для нее нужно как минимум обладать приличным исходным метаболизмом. Давайте посмотрим - как распределены фитофаги среди позвоночных. Их много среди млекопитающих и птиц, но их вовсе нет (за парой исключений, о чем речь впереди) среди современных амфибий и рептилий. А вот среди рыб фитофаги есть (например, известный всем толстолобик - неутомимый борец с зарастанием ирригационных сооружений), хотя их немного. Странная какая-то картина, бессистемная... Но это только на первый взгляд.
С млекопитающими и птицами всё ясно - они теплокровные. А вот у рыб метаболизм, как ни странно, по целому ряду параметров является более продвинутым, чем у низших тетрапод; мы помним, что у рыб иногда возникает временная "теплокровность" - именно за счет наличия у них единственного круга кровообращения с полным разделением крови на венозную и артериальную. Так вот, один двух из случаев фитофагии у низших тетрапод - головастики (высокоспециализированные потребители водорослевых обрастаний), но ведь головастик-то по сути дела не амфибия, а рыба - существо с жаберным дыханием и единственным кругом кровообращения. Второй случай - сухопутные черепахи: эти, напротив, довели до полного логического завершения стратегию пассивной защиты (практически непроницаемый панцирь) и за счет этого минимизировали все прочие расходы организма.
Между тем, среди ископаемых низших тетрапод фитофагов хватало; они встречались и среди тероморфов (эдафозавры, дицинодонты), и среди завроморфов (птицетазовые динозавры и завроподы). Однако все они были существами крупноразмерными - в этих случаях фитофагия явно возникает на базе инерциальной гомойотермии. Именно поэтому в малом размерном классе фитофагия не возникает очень долго - вплоть до появления настоящих млекопитающих, которое радикально изменит всю стиуацию в наземном сообществе (см. далее).
Кстати, о фитофагии динозавров. В популярных книжках часто можно увидеть картинки, на которых бодро и весело шагающие по суше завроподы ощипывают листву с деревьев, на манер жирафов либо слонов (примерно так же они себя ведут и в фильме "Парк юрского периода"). Вообще-то существо такой комплекции и с таким строеним суставов на суше должно чувствовать себя неважно - большинство палеонтологов издавна полагало, что эти гиганты вели полуводный образ жизни, как нынешние бегемоты [63]... Однако для нас сейчас важнее строение их зубов: это длинные узкие "карандашики", не соприкасающиеся между собою (см. рисунок 45, а); они кажутся совершенно непригодными для перетирания жесткой, лишенной палисадной ткани листвы голосеменных (другой-то в те времена не существовало). Создается впечатление, что это - отнюдь не "жернова" (как у коровы или кролика), а скорее "дуршлаг", при помощи которого отцеживают из воды какую-то достаточно нежную растительную пищу.
А.Г. Пономаренко обращает в этой связи внимание на уже знакомые нам плавающие маты - гигантские скопления водных мхов и печеночников, обросших водорослями: клеточные стенки у этих растений не укреплены лигнином (в воде это не требуется), а главное - всё это битком набито животным белком в виде населяющих мат ракообразных и водных насекомых. Сходное с завроподами строение имеют зубы прочих ранних растительноядных групп (игуанодонов, стегозавров), так что не исключено, что все они вели приводный образ жизни, питаясь главным образом плавающими матами. Может статься, что наземными растительными кормами (более грубыми) динозавры стали питаться лишь во второй половине мела, когда среди них появились группы, имеющие зубные батареи - последовательные ряды плотно сидящих зубов (как у акулы), сменяющие друг друга по мере их стирания. Появление этих групп, приспособленных к питанию высокоабразивными кормами (гадрозавры, цератопсиды), было явно связано с распространением в это время покрытосеменных растений.


Итак, мезозой - время завроморфов: представители этой ветви доминируют и на суше (динозавры), и в морях (эвриапсиды), и в воздухе (птерозавры). А что же тероморфы? Именно в это время возникает самая продвинутая их группа, которая будет определять облик будущего, кайнозойского, сообщества позвоночных - млекопитающие (маммалии). Изучив детали этого процесса, Л.П. Татаринов (1976) выдвинул концепцию маммализации териодонтов - достаточно растянутое во времени появление у самых различных представителей таксона, рассматриваемого в качестве предкового, отдельных признаков, характерных для таксона-потомка. Было показано, что диагностические признаки, отличающие маммалий от рептилий (внутреннее ухо из трех косточек, мягкие губы, расширенные большие полушария мозга и т.д.) появляются в различных группах зверозубых ящеров параллельно и независимо, но лишь у одной группы - настоящих маммалий - возникает полный синдром из 8 таких признаков (рисунок 48). То есть, "стать млекопитающими" пытаются многие группы териодонтов, а кто именно достигнет результата (в нашем случае - потомки циногнат) - не столь уж важно.
Аналогичная тенденция параллельного развития ключевых признаков сохраняется и внутри маммалий. Так, среднее ухо "маммального типа", состоящее из трех слуховых косточек, входивших первоначально в состав нижней челюсти (у амфибий, рептилий и птиц есть единственная слуховая косточка, stapes), возникает у териевых млекопитающих (сумчатых и плацентарных) и прототериевых (однопроходных) млекопитающих двумя разными способами. Считается, что плацента у млекопитающих возникала минимум четырьмя различными способами (наш, "обезьяний" тип плаценты, когда зародыш буквально плавает в крови матери, - один из самых примитивных, по сравннению с тем, что существует, например, у грызунов); в последнем случае вполне правомочно говорить о плацентаризации териев (по аналогии с маммализацией териодонтов). По-видимому, таков вообще механизм происхождения всех крупных групп: вспомните тетраподизацию кистеперых рыб и "эукариотизацию".
В последнее время стало ясно, что происхождение птиц происходило по сходной схеме - ее можно назвать авиизацией архозавров. Птицы ведут свое происхождение от мелких ящеротазовых динозавров-манираптер, причем птичьи признаки тоже возникали неоднократно и независимо. Как полагает Е.Н. Курочкин (1996), полный синдром таких признаков возникал как минимум дважды: у хвостатых меловых энанциорнисов (они ведут свое происхождение от юрского археоптерикса, который, по сути, - еще просто оперенный динозаврик), и у настоящих, бесхвостых, птиц, чьими предками, судя по всему, были позднетриасовые тероподы протоависы (рисунок 47, д-е); беззубыми птицы становятся параллельно в обеих этих ветвях. Особенно же интересны такие "незавершенные" попытки авиизации, как небольшой - ростом с первоклассника - динозавр Avimimus, который имеет в скелете передней конечности пряжку (эта кость служит птицам для раскрытия маховых перьев) и череп с выставленными орбитами (это нужно, чтобы глаз не тонул в пере), или недавно описанный Sinopaleopteryx, покрытый чем-то вроде пухового пера (у археоптерикса перья только маховые). Можно предположить, что перьевой покров первоначально возникает как теплоизолятор для существ из малого размерного класса, не обладающих инерциальной гомойотермией, и лишь затем начинает использоваться для полета.
Вернемся, однако, к маммалиям. Часто пишут, что "мезозой был веком динозавров, а кайнозой - век пришедших им на смену млекопитающих"; это - типичный "научный предрассудок", из числа тех, о которых говорил С.В. Мейен (см. главу 9). На самом деле динозавры и млекопитающие появились на Земле одновременно - в конце триаса, и мирно сосуществовали потом на протяжении 120 миллионов лет. Более того, число известных на сегодня видов видов мезозойских млекопитающих просто-напросто превышает число видов динозавров; правда, все они были небольшими по размеру существами (по-настоящему маммалии вышли в крупный размерный класс только в эоцене), а потому не столь любимы популяризаторами науки и писателями-фантастами как гиганские рептилии, но это уже другой вопрос.
Здесь, видимо, следует сказать несколько слов о вымирании динозавров, которое широкой публике отчего-то представляется едва ли не самой жгучей тайной из всего, с чем имеют дело палеонтологи. Вообще о "Великом вымирании" на границе мелового периода и кайнозоя, охватившем множество групп животных, речь пойдет чуть далее (в главе 12), однако один из его аспектов - гибель "владык мезозойской суши" - лучше детально рассмотреть в этом разделе. Обычно картину вымирания динозавров представляют себе так. Есть вполне процветающая и многочисленная группа животных (и хищных, и растительноядных), которая в один прекрасный момент (на границе между мелом и палеогеном) вымирает - в одночасье и повсеместно. Поскольку группа эта не имела конкурентов в животном мире (пришедшие ей на смену млекопитающие не вытеснили ее, а просто чуть позднее заняли освободившуюся экологическую нишу), события эти, очевидно, связаны с какой-то внешней - относительно сообщества позвоночных - катастрофой: климатической (резкое похолодание - или, напротив, повышение температуры), космической (взрыв сверхновой, изменение полярности магнитного поля планеты) или, на худой конец, биотической (появившиеся в позднем мелу цветковые растения отравили растительноядных динозавров алкалоидами, а маленькие, но зловредные млекопитающие поели все их яйца). В последнее время стала довольно популярна астероидная гипотеза, связывающая "Великое вымирание" (и, в частности, гибель динозавров) с падением гигантского метеорита; поднявшаяся в результате удара пыль сделала земную атмосферу почти непрозрачной для солнечных лучей, что имело катастрофические последствия для фотосинтезирующих растений и, далее, для питающихся ими животных.
Об астероидной гипотезе мы поговорим подробно в главе 12; упомянем лишь, что большинство палеонтологов относятся к ней (равно как к "взрывам сверхновых" и т.п.) весьма скептически. Все эти импактные гипотезы ("гипотезы ударного воздействия") не отвечают на вопрос о странной избирательности этих импактов (динозавры тогда вымерли - а крокодилы, многие из которых были наземными, прекрасно себя чувствуют), безмерно переоценивают скорость вымираний (их можно назвать "стремительными" лишь в геологическом масштабе времени - речь идет о тысячах, и даже десятках тысяч лет) и их синхронность в разных местах планеты (в большинстве местонахождений последние динозавры исчезают до иридиевой аномалии, однако известны и по меньшей мере две фауны динозавров палеогенового возраста - т.е. заметно позже ее). Это, однако, частности. Более серьезный вопрос - правомочно ли вообще говорить о "вымирании динозавров в конце мела"?
Уточним, о чем идет речь. На протяжении истории любой группы постоянно появляются новые виды, а старые вымирают - вымирание есть совершенно нормальный компонент эволюционного процесса. Но известны и случаи катастрофических вымираний, как это произошло, например, на той же самой мел-палеогеновой границе с планктонными форамениферами: группа спокойно наращивает разнообразие, а потом в одночасье - бабах! - из нескольких десятков видов остается один. Так вот, с динозаврами ничего подобного не происходило. Группа достигла максимума разнообразия в позднем мелу, а затем оно начало снижаться; однако если посчитать именно темпы вымирания динозавров (а не изменения их суммарного разнообразия !), то окажется, что в конце маастрихтского века, когда вымерли последние 7 видов, не произошло ничего особенного, и темпы эти не выше, чем в предшествующие времена...
Как же так?! А очень просто: вымирание динозавров идет весь поздний мел с более или менее постоянной скоростью, но начиная с некоторого момента эту убыль перестает компенсировать возникновение новых видов; старые виды вымирают - а новых им на смену не появляется, и так вплоть до полного исчезновения группы. (Аналогия: страна проигрывает войну не потому, что противник стал наносить ей на фронте небывало высокие потери, а оттого что в тылу остановились из-за отсутствия сырья танковые и авиационные заводы). Иными словами: в конце мела имело место не катастрофическое вымирание динозавров, а непоявление новых им на смену - а это, согласитесь, заметно меняет картину. Значит, мы имеем дело с достаточно растянутым по времени, "естественным" процессом; и даже если допустить, что упомянутые выше 7 последних видов (из маастрихта) погибли в результате некоего "импакта", это все равно не меняет сути дела.
Многие авторы полагают, что речь идет о климатических изменениях. Действительно, в конце мела (маастрихтский век) началось заметное похолодание, а осушение морских шельфов вело к установлению более континентального климата с резкими температурными перепадами - инерциально-гомойотермным динозаврам все это и вправду было совершенно "не в масть". Однако больший интерес, на мой взгляд, представляют "биотические" гипотезы, касающиеся экосистемных перестроек. Среди неспециалистов достаточно популярные гипотезы о том, что растительноядные динозавры якобы не сумели приспособиться к новой диете - распространившейся в середине мела цветковой растительности: отравились вырабатываемыми цветковыми алкалоидами или активно концентрируемыми их тканями тяжелыми металлами [64], сточили зубы о содержащиеся в их клетках кристаллы кремнезема, и т.п. Все это представляется абсолютно несерьезным - хотя бы потому, что на поздний мел просто приходится максимальный расцвет группы: из этого времени известно столько же видов динозавров, сколько за всю предшествующую историю - с триаса по конец раннего мела. Именно тогда, кстати, появляются специализированные потребители высокоабразивных кормов (типа злаков) с зубными батареями. Иное дело - события, происходившие в мелу внутри сообщества позвоночных.
Мы с вами помним, что основой 120-миллионолетнего "мирного сосуществования" динозавров и млекопитающих было полное разделение их экологических ниш в соответствии с различиями в размерных классах. В мелком размерном классе, формируемом млекопитающими, в те времена не существовало настоящих плотоядных форм - только насекомоядные и неспециализированные хищники, типа ежей или опоссумов. Ситуация поменялась в мелу, когда на эволюционную арену вышли териевые млекопитающие, имевшие заметно более высокий уровень метаболизма, нежели триасовые и юрские прототерии. На этой метаболической основе "истинно-гомойотермным" териям впервые удается создать фитофага в малом размерном классе - условно говоря, "крысу". Событие поистине революционное - легко понять, насколько теперь расширяется пищевая база субдоминантного сообщества [65]. Теперь в нем с неуклонностью должен появиться и управляющий блок из специализированных хищников - столь же условно говоря, "фокстерьер". И вот тут-то - совершенно неожиданно! - начинаются крупные неприятности у динозавров - ибо детеныши-то их являются членами не доминантного, а субдоминантного сообщества. Детеныш динозавра, не обладающий еще (в силу своих размеров) инерциальной гомойотермией - это просто большая ящерица, лакомая добыча для такого вот, круглосуточно активного, "фокстерьера".
Защитить детеныша - задача чепуховая... но только на первый взгляд. Это (как нам известно) хорошо удается слонам и крупным копытным, ведущим стадный образ жизни, но с динозаврами ситуация иная. Легко наладить охрану кладки (некоторые динозавры в позднем мелу действительно отрабатывают такие типы поведения), однако когда детеныш имеет размер кролика, а родители - ростом со слона, то его быстрее раздавишь, чем защитишь от нападения [66]. Сократить этот разрыв в размерах невозможно (размер детеныша ограничен максимальными размерами яйца: если сделать его слишком большим, скорлупа не выдержит давления жидкости, а если увеличить толщину скорлупы, зародыш задохнется), и молодь динозавров обречена оставаться членом субдоминантного сообщества. Интересно, кстати, что именно в это время хищные динозавры-тероподы совершают ряд попыток войти в малый размерный класс, чтобы тоже использовать такой новый пищевой ресурс, как "крысы", однако все они оканчиваются неудачей: сообщество уже сформировано, ниши поделены, а тероподы-крошки поспели к шапочному разбору - в точности как тероморфы в триасе.
Этот сценарий событий, предполагающий постепенное угасание динозавров за счет полной утери ими малого размерного класса (А.С. Раутиан образно назвал малый размерный класс "меристемой группы" - имея в виду, что именно из него исходят все эволюционные новации), представляется наиболее убедительным. Последнюю точку в истории "драконов мезозоя" действительно могло поставить маастрихтское похолодание и континентализация климата, однако это была именно "последняя соломинка, сломавшая спину верблюда". В любом случае, большинство палеозоологов не видит никаких оснований к тому, чтобы объяснять эти события внеземными (чуть было не сказал - "потусторонними") причинами.



12. Мезозойские биоценотические кризисы. "Ангиоспермизация мира" (средний мел) и "Великое вымирание" (конец мела). Импактные и биотические гипотезы.
Как уже было сказано, история наземных экосистем - это фактически история трех групп живых организмов: сосудистых растений, насекомых и позвоночных-тетрапод, а также их взаимоотношений. Основу окружающего нас кайнозойского мира составляют цветковые растения и экологически связанные с ними группы насекомых (таких, как, например, опылители - пчелы, мухи, бабочки), а также общественные насекомые (муравьи и термиты); наиболее заметными членами сообщества позвоночных являются плацентарные млекопитающие и птицы. Если говорить о водоемах, то тут доминируют настоящие костистые рыбы; верхние трофические этажи в морях формируют морские млекопитающие (китообразные и ластоногие) и акулы современного типа.
Мезозойский мир выглядел совершенно иначе. Растительную основу его составляли голосеменные (помимо хвойных - очень разнообразные гинкговые, саговники и родственые им беннетиты), в сообществе позвоночных доминировали архозавры - динозавры на земле, птерозавры в воздухе. Рыбы представлены в основном ганоидами [67], в морях главными хищниками являлись эвриапсидные рептилии (ихтиозавры и плезиозавры), а также головоногие (аммониты и белемниты). Различия среди насекомых не менее существенны: в те времена доминировали занимающие ныне подчиненное положение тараканы, цикады, сетчатокрылые и скорпионницы. Когда же именно возник этот наш кайнозойский мир? Произошла ли эта смена более или менее единовременно во всех группах, либо была растянутой во времени? Было ли это плавным замещением "ветеранов" "новобранцами", или, напротив, кризисом, сопряженным с массовыми вымираниями мезозойских групп?
О резких изменениях планетарной биоты в конце мелового периода ученые знали уже в XVIII веке; происходившие тогда события часто называют "Великим вымиранием". Наибольшее внимание обычно привлекает исчезновение гигантских рептилий (динозавров и птерозавров на суше, плезиозавров и мозозавров в море), однако помимо них в это время вымирают аммониты и белемниты, иноцерамы и рудисты (крупные - размером до метра - двустворки) и еще множество морских групп. Особено сильно пострадал планктон: раковинные простейшие - радиолярии и форамениферы, одноклеточные водоросли с известковым (кокколитофориды) и кремнеземовым (диатомеи) скелетом. При этом меловые виды обычны и разнообразны вплоть до последнего миллиметра отложений перед мезозойско-кайнозойской границей. Из данных магнитостратиграфии следует, что наибольшие изменения фауны соответствуют периоду обращенной полярности магнитного поля Земли (так называемый интервал 39), длившемуся не более 500 тыс лет. Иными словами, смена мезозойской биоты на кайнозойскую произошла внезапно и очень быстро, что наводит на мысль о какой-то глобальной катастрофе; а поскольку изменения эти охватили как морские, так и сухопутные группы, экологически не связанные между собою, логично связать ее с какой-то внешней по отношению к биосфере причиной - земной (катастрофический вулканизм и т.п.) или космической (вспышка сверхновой, многократное усиление излучения из космоса из-за переполюсовки магнитного поля планеты, падение гигантского астероида и т.п.).
Здесь следует сделать одно отступление, касающееся методологии. Мы с вами уже говорили о том, что основу европейского научного мышления составляет "Бритва Оккама" (см. главу 1-а) - из нескольких конкурирующих гипотез выбирается наиболее простая, не вводящая "избыточных сущностей". Всё так, но только вот представления о "простоте" и о том, какие из сущностей являются "избыточными" могут довольно сильно различаться у представителей разных наук.
Применительно к нашему конкретному случаю это означает следующее. Для физика более простыми, а потому более привлекательными, будут "однофакторные", импактные, гипотезы (извергнулись разом все вулканы - и всё живое отравилось серой и тяжелыми металлами; упал астероид - и поднятая им пыль настолько замутнила атмосферу, что растения перестали фотосинтезировать); представления же о системных свойствах биосферы являются "избыточными".
Иное дело - биолог; для него вполне очевидно, что экосистемы и биосфера являют собою не механические наборы живых организмов (вроде террариумов на Птичьем рынке), а высокоцелостные гомеостаты, обладающие своим собственным поведением, способные кондиционировать среду своего обитания и эффективно противостоять внешним возмущениям. Поэтому с точки зрения биолога более простыми будут гипотезы, предполагающие внутренние причины экосистемных смен - даже наиболее резких, кризисных (превращения червеобразной гусеницы в твердую неподвижную куколку, а куколки - в бабочку выглядят со стороны явными "кризисами" в процессе индивидуального развития насекомого), а внешние воздействия - "избыточной сущностью", которую можно привлекать лишь после того, как исчерпаны все иные, "внутрибиосферные" варианты объяснения. Это различие между "физиками" и "биологами" (названия эти, разумеется, условны) носит в некотором смысле мировоззренческий характер, и оттого лучше загодя обозначить свою позицию; я, как легко догадаться, занимаю "биологическую" позицию - положение обязывает...
Итак, возвращаемся к "Великому вымиранию". В середине 60-х годов при исследовании разреза пограничных мел-кайнозойских отложений в Губбио (Италия) в тонком слое глины, соответствующем фаунистической границе (его возраст - 67 млн лет), была обнаружена необычайно высокая концентрация редкого металла иридия (Ir), в 20 раз превышающая его среднее содержание в земной коре. Впоследствии такие иридиевые аномалии на мел-кайнозойской границе были найдены во множестве мест по всему миру, а содержание металла в некоторых из них превышает фоновое в 120 раз; протяженность периода, когда накапливались эти осадки, была (судя по толщине их слоя) очень невелика - не более 10 тысяч лет. В земной коре иридий редок потому, что он хорошо растворим в железе: почти весь земной иридий сконцентрирован сейчас в ядре планеты. Соответственно, его довольно много в веществе железных метеоритов, представляющих собой фрагменты планетных ядер.
На этом основании Л. Алварес (1980) предположил, что иридиевая аномалия - следствие удара о Землю крупного астероида, вещество которого рассеялось по всей ее поверхности (астероидная гипотеза). Чтобы дать наблюдаемое количество иридия, требуется тело внеземной природы диаметром приблизительно 10 км и массой 1010 т; при его падении на сушу возникла бы воронка диметром около 100 км (главным претендентом на эту роль считают кратер Чикксулуб на Юкатанском полуострове). Расчеты показывают, что при таком ударе в атмосферу было выброшено огромное количество пылевидного материала (в 60 раз больше массы самого астероида). Альварес и его сторонники полагают, что эта пыль обращалась вокруг Земли несколько лет, прежде чем выпала обратно на поверхность. Это плотное пылевое облако, сквозь которое слабо проходит солнечный свет, должно было сильно ослабить фотосинтез, что привело к гибели растений (прежде всего -планктонных водорослей, имеющих очень короткий жизненный цикл), а затем и питающихся ими животных. Кроме того, это должно было вызвать резкое охлаждение поверхности планеты ("астероидная зима"). В воде океанов из-за ослабления фотосинтеза накапливается CO2, что ведет к повышению ее кислотности, а это, в свою очередь, - к растворению раковин карбонатсекретирующих организмов (от фораменифер до иноцерамов).
Р. Кэрролл (1993) в своем учебнике палеонтологии пишет: "Ученые-физики, признавая основные выводы Альвареса, оспаривают некоторые детали. Специалисты по ископаемым остаткам обычно настроены очень критически"; А.Г. Пономаренко весьма точно отразил отношение палеозоологов к "импактным" гипотезам, завершив соответствующую лекцию словами: "К несчастью, воззрения эти в последние годы распространились, как чума". Палеонтологи, конечно, не могут профессионально оценить математические модели, из коих следует принципиальная, теоретическая возможность наступления "астероидной зимы" (хотя по некоторым расчетам пыль должна была осесть не через несколько лет, а уже через несколько недель, а гидрохимики напоминают о существовании в морской воде карбонатно-бикарбонатного буфера, изменить кислотность которого чрезвычайно трудно), но вот о конкретных событиях конца мела им очень даже есть чего сказать. Суть дела в том, что наличие причинной связи между иридиевой аномалией (которая факт) и позднемеловым вымиранием (которое тоже факт), вообще-то говоря, решительно ни из чего не следует.
Начнем с того, что иридиевых аномалий в отложениях самого различного возраста найдено (с той поры, как их стали целенаправленно искать) уже несколько десятков - но только они никак не связаны с крупными фаунистическими сменами. И наоборот - все попытки обнаружить следы астероидных импактов в горизонтах, соответствующих другим крупным вымираниям, таким, например, как пермо-триасовое (по справедливости "Великим" следовало бы назвать именно его - оно было куда более масштабным, чем мел-палеогеновое) ни к чему не привели. Существует целый ряд точно датированных метеоритных кратеров даже более крупного размера, чем предполагаемый Альваресом (до 300 км в диаметре), и при этом достоверно известно, что ничего серьезного с биотой Земли в те моменты не происходило. Скурпулезное, "по миллиметрам", изучение пограничных разрезов показало, что синхронность иридиевой аномалии и "Великого вымирания" сильно преувеличена. Массовое вымирание морских организмов было "мгновенным" лишь по геологическим меркам и продолжалось, по разным оценкам, от 10 до 100 тысячелетий (а вовсе не годы - как это должно было быть по импактным моделям). Последовательность исчезновения планктонных организмов в разных местах неодинакова, а пики вымирания могут расходиться со временем иридиевой аномалии на десятки тысяч лет, причем многие группы (например, белемниты) вымирают до аномалии, а не после нее.
В этом смысле весьма показательна ситуация с Эльтанинским астероидом (около 4 км в поперечнике), упавшим в позднем плиоцене, около 2.5 млн лет назад, на шельф между Южной Америкой и Антарктидой; остатки астероида были недавно подняты из образовавшегося в морском дне кратера. Последствия этого падения выглядят вполне катастрофическими - километровые цунами забрасывали морскую фауну вглубь суши; именно тогда на андийском побережье возникли очень странные захоронения фауны со смесью морских и сухопутных форм, а в антарктических озерах вдруг появляются чисто морские диатомовые водоросли. Что же касается отдаленных, эволюционно значимых последствий, то их просто не было: следы этого импакта заключены внутри одной стратиграфической зоны. То есть - абсолютно никаких вымираний за всеми этими ужасными пертурбациями не последовало.
Обращает на себя внимание тот факт, что из всех групп, ставших жертвами "Великого вымирания", наземными были лишь динозавры (которые к тому же, как мы помним, вымерли несколько позже иридиевой аномалии); не морской группой были и вымершие тогда же птерозавры, но те, судя по всему, были трофически связаны с морем. (Кстати, упоминавшееся выше грандиозное пермо-триасовое вымирание было чисто морским - на суше тогда тоже не произошло ничего примечательного.) Если же обратиться к меловой континентальной биоте, то окажется, что радикальные изменения в составе ее ключевых групп (растений и насекомых) произошли примерно на 30 млн лет раньше - в конце раннего мела; А.Г. Пономаренко удачно назвал эти события "ангиоспермизацией мира", выделив важнейшую их черту - массовое распространение ангиоспермов (цветковых растений). Здесь можно вспомнить, что ботаники иногда стремятся использовать свою собственную временную шкалу и делить историю растительности не на "палеозой, мезозой и кайнозой", а на "палеофит, мезофит и кайнофит". Так вот, граница между "мезофитом" и "кайнофитом" проходит внутри мелового периода: с точки зрения ботаника (и - как мы увидим дальше - энтомолога) поздний мел - это фактически уже кайнозой.
Появление и распространение покрытосеменных - одно из ключевых событий в истории биосферы, а вызванные им изменения сопоставимы по своим масштабам с появлением наземных (сосудистых) растений или животных с минеральным скелетом. Нынешний мир - ангиоспермный; голосеменным и споровым пришел в мелу такой же конец, как в позднем палеозое - водорослевым матам (при появлении сосудистой растительности). Ныне голосеменные растут лишь там, где им "позволяют": сосна растет на песках и болоте, а лиственница - на вечной мерзлоте совсем не оттого, что им там хорошо, а оттого, что на эти неудобья "не позарился" никто из цветковых. В некоторых ландшафтах (в тропических лесах и в пустынях) голосеменных нет вовсе [68].
Если задать ботанику вопрос - какие черты покрытосеменных привели их к эволюционному успеху, он наверняка начнет говорить о двойном оплодотворении, о триплоидном эндосперме и т.п.; это всё, конечно, верно - но немножко не о том. "С точки зрения биосферы" наиболее существенны, пожалуй, три свойства цветковых, позволившие им радикально изменить самую структуру мезозойских экосистем.
Склонность к неотении (неотения - обретение организмом половозрелости на ранних (личиночных) стадиях своего индивидуального развития), то есть - в данном конкретном случае - к образованию травянистых форм, которые по сути дела есть древесные проростки, ставшие способными к размножению; напомним, что голосеменные "траву" не образуют вовсе - ни сейчас, ни в прошлом. Именно травянистые двудольные являются самыми агрессивными эксплерентами ("сорными растениями"), мгновенно захватывающими места нарушений растительного покрова, а травянистые однодольные, склонные к образованию многолетней дернины, наиболее эффективно препятствуют эрозии.
Появление "мясистых" листьев с большим объемом фотосинтезирующей паренхимы, вызвавшее появление листогрызущих насекомых. Дело в том, что до того насекомые потребляли лишь генеративные органы, содержимое сосудов, даже древесину - но только не листья: в листе голосеменного (даже такого, как гинкго), попросту говоря, нечего есть. Ситуация менятся лишь с появлением цветковых - объеденные листья и мины (ходы, проедаемые личинками насекомых в толще листа) известны с самого начала позднего мела (сеноманский век). На покрытосеменных сформировалась общирная фауна листогрызущих насекомых, и уже после этого они перешли на голосеменные, папоротники и хвощи.
Энтомофилия цветков, открывающая покрытосеменным путь к сложной коэволюции с насекомыми. Собственно говоря, сам цветок покрытосеменных, судя по всему, сформировался в процессе адаптаций к насекомоопылению для защиты завязи от повреждений ее опылителями.


Ангиоспермы впервые появляются в палеонтологической летописи в начале раннего мела, в неокоме; на протяжении барремского и аптского веков они представлены единичными находками, в альбе идет стремительное нарастание их числа, а уже в самом начале позднего мела, в сеномане, цветковые составляют большую часть ископаемых флор - то есть наступает "кайнофит" (рисунок 50). Среднемеловая экспансия цветковых была столь стремительной (она фактически уложилась в ничтожный по геологический меркам отрезок от 115 до 108 млн лет), что Дарвин в свое время в сердцах назвал этот эпизод палеонтологической истории "отвратительной тайной - abominable mistery". Делались попытки объяснить это тем, что цветковые на самом-то деле появились на Земле давным-давно, минимум в юре - просто они обитали лишь в горах (не попадая по этой причине в палеонтологическую летопись), а в середине мела заселили, наконец, приводные местообитания, благоприятствующие попаданию в захоронения. Вообще такой "период скрытого существования" сбрасывать со счетов никак нельзя - но в данном случае эта гипотеза не проходит: дело в том, что пыльца покрытосеменных (которая, ясное дело, летает везде, и ее не "упрячешь" в горы) появляется в летописи одновременно с их макроостатками. По всем признакам, цветковые действительно возникли в начале мела, причем именно в приводных местообитаниях.
В 70-х годах советские палеоэнтомологи исследовали множество местонахождений меловых насекомых в Сибири и Монголии, "закрасив" тем самым самое крупное "белое пятно" в геологической истории класса. Оказалось, что у насекомых график, который отражает долю вымерших таксонов в фаунах разных времен, ведет себя довольно неожиданным образом (рисунок 51). Доля вымерших семейств мало меняется на протяжении большей части мезозоя, и на границе юры и мела составляет около 60% ; затем, в течении раннего мела, доля эта стремительно падает от 60 до 20% , в позднем мелу это падение резко замедляется (от 20 до 5%), а к началу кайнозоя кривая вновь "выходит на плато", только уже в районе 5%. Иными словами, у насекомых самая резкая фаунистическая смена, связанная с массовым вымиранием мезозойских групп, приходится не на конец мела, а на его середину - в точности как у растений. На этом основании В.В. Жерихин (1978) предложил следующую модель среднемелового биоценотического кризиса.


Покрытосеменные возникли в начале мелового периода, первоначально как ценофобы - растения, не входящие в закономерные, сложившиеся в длительной коэволюции сукцессионные ряды [69]. Они росли в качестве "сорной" растительности по свободным от других растений участкам (на речных отмелях, береговых оползнях, гарях), которые соседствовали с гораздо более обширными участками, занятыми зрелыми сообществами мезофитной растительности. Покрытосеменные были исходно энтомофильными и смогли сформироваться лишь в окружении энтомофильных же голосеменных (таких, как беннетиты, саговники, кейтониевые), используя уже сложившийся к тому времени комплекс их опылителей. Но если покрытосеменные оказались среди пионерных растений мезофита единственными энтомофилами (а, судя по всему, так оно и было), то это должно было дать им гиганские преимущества: именно для локально распределенных, не образующих сплошных зарослей пионеров насекомоопыление особенно выгодно; впрочем, возможно, имело место и прямое конкурентное вытеснение покрытосеменными энтомофильных голосеменных из пионерных сообществ - за счет более эффективного привлечения насекомых, лучшей защиты от повреждения завязи опылителями и т.д.
Основой стремительной среднемеловой экспансии цветковых стало то, что им удалось закрепиться в качестве нормальной пионерной растительности - для чего решающими факторами стали их исходная энтомофильность и наличие среди них травянистых форм (что во много раз убыстряет зарастание поврежденных участков). Покрытосеменные не пытались потеснить всю мезофитную растительность, что было абсолютно нереально; они "всего-навсего" конкурентно вытеснили прежних пионеров - и тем самым блокировали все последующие стадии мезофитной экогенетической сукцессии. Разрушение существовавших в то время закономерных сукцессионных рядов (попросту говоря - мезофитная растительность продолжала существовать там, где она существует, но потеряла способность восстанавливаться после экзогенных нарушений), вызвало полный развал мезозойских наземных экосистем и массовое вымирание входивших в них животных; наиболее интенсивно эта деструкция шла в альбе (захватывая конец апта и начало сеномана).
В.В. Жерихин (1978) обратил внимание на любопытнейшую черту энтомофаун этого времени: многие семейства, характерные для мезозоя, обнаруживаются в них в последний раз, тогда как сколько-нибудь заметного появления новых групп не отмечается, и при этом появляется целый ряд представителей реликтовых для того времени (раннемезозойских и даже позднепалеозойских) групп. Это "всплывание реликтов" считают одним из наиболее ярких симптомов кризиса, охватившего среднемеловые сообщества: вымирание доминирующих раннемеловых групп (наиболее тесно связанных с существующей сукцессионной системой) создает экологический вакуум, который ненадолго заполняют древние формы, оттесненные к тому времени "на обочину жизни".
Складывающиеся на совершенно новой основе раннекайнофитные сообщества первоначально были несбалансированными и неустойчивыми. Слабость биоценотической регуляции и обилие незанятых экологических ниш вели к очень быстрой, взрывной, эволюции различных групп организмов (из насекомых здесь можно отметить высших бабочек и мух, паразитических перепончатокрылых, а также общественных насекомых - муравьев и термитов), по мере же насыщения биоценозов темпы эволюции снижались. Сложные трофические цепи в новых кайнофитных сообществах сформировались очень быстро (листья, поврежденные минирующими бабочками, сами эти бабочки и их высокоспециализированные паразиты из числа наездников Braconidae появляются в летописи почти одновременно, в сеномане) и в дальнейшем менялись мало. "По экологическому облику и систематическому составу , - заключает Жерихин (1980), - позднемеловые фауны значительно сильнее отличаются от раннемеловых, чем от кайнозойских, и могут рассматриваться как ранний, первоначально сильно обедненный, вариант этих последних. В сущности, по набору жизненных форм они имеют не так уж много отличий от современных".
Если вернуться к истокам среднемелового кризиса - самому возникновению покрытосеменных, - то здесь обнаруживается еще один интересный аспект, на который обратил внимание А.Г. Пономаренко (1997). Дело в том, что, по данным последних лет, серьезные эволюционные изменения среди насекомых начинаются несколько раньше широкого распространения покрытосеменных - с конца юры. Это, казалось бы, противоречит гипотезе о причинной связи между этими явлениями - но только на первый взгляд. Именно в это время начинается очередная "...зация" - ангиоспермизация голосеменных, и широко распространяются проангиоспермы (термин В.А. Красилова, 1989) - голосеменные с отдельными чертами цветковых (таковы, например, гнетовое Eoantha с крупными, явно энтомофильными "цветами", или беннетит Manlaia, имитирующий осоку - см. рисунок 52). "С точки зрения экосистемы" точное систематическое положение всех этих проангиоспермов не столь уж важно - все они могут в некоторой степени играть экологическую роль настоящих покрытосеменных.


Неудивительно, что параллельно с энтомофильными голосеменными появляются антофильные насекомые; имитаторам цветковых в растительном мире сопутствуют столь же многочисленные имитаторы бабочек среди насекомых (таковы, например, Calligrammatidae из сетчатокрылых, или Aneuretopsychidae из скорпионниц - см. рисунок 52). Важнее же всего то, что здесь складывается система с положительной обратной связью: наличие у некого беннетита комплекса опыляющих его насекомых стимулирует появление энтомофилии у его соседей-голосеменных, что, в свою очередь, расширяет экологическую нишу этих насекомых-опылителей, и т.д. Каждый шаг на этом пути увеличивает вероятность следующего и делает появление покрытосеменных (т.е. растений с полным синдромом ангиоспермных признаков) совершенно неизбежным; какая же конкретно группа голосеменных даст начало "настоящим цветковым" (равно как - какие именно из мекоптероидных насекомых породят "настоящих бабочек"), вообще-то говоря, не столь уж важно. Именно эти взаимно индуцируемые процессы Пономаренко и назвал "ангиоспермизацией мира".
"Ангиоспермизация мира" захватывает не только насекомых, но и все прочие компоненты континентальных экосистем. С начала мела на суше стремительно распространяются птицы (это особенно хорошо видно по укрупнению птерозавров - те полностью уходят в нишу крупных парителей) и териевые млекопитающие; в пресных водоемах настоящие костистые рыбы вытесняют ганоидов. После апт-альбского кризиса мир обретает вполне знакомый нам облик; правда, в нем наличествуют динозавры (и не просто "наличествуют" - они вполне процветает на протяжении большей части позднего мела), однако судьба этой группы была рассмотрена нами выше (глава 11), и нет оснований напрямую связывать ее вымирание с драматическими изменениями в морской биоте на границе мела и кайнозоя. Таким образом, мезозойско-кайнозойская смена на суше произошла много раньше, чем в море.
Ну, а каковы же всё-таки причины позднемелового "Великого вымирания"? Если не падение астероида и прочие "импакты" - то что же? Давайте прежде всего попытаемся найти какие-нибудь общие черты для этого события и для другого морского вымирания - пермско-триасового. Оно было самым крупным в истории Земли - тогда в морских группах вымерло 50% семейств, 70% родов и более 90% видов (для сравнения: при мел-кайнозойском вымирании исчезло менее четверти семейств). Помимо прямого исчезновения множества палеозойских групп (трилобиты, палеозойские кораллы - ругозы и табуляты) произошла радикальная смена структуры морских экосистем (роль основных рифостроителей перешла от мшанок к кораллам, донных фильтраторов - от брахиопод к двустворчатым моллюскам, и т.п.). Причины этой грандиозной фаунистической смены остаются загадкой; стандартные объяснения вроде "глобального катастрофического вулканизма" или морской регрессии, резко сократившей площадь шельфов (основной зоны обитания морских организмов) производят впечатление явно придуманных "за неимением лучшего". Мне лично наиболее остроумной и логичной (хотя и не бесспорной) представляется гипотеза Х. Таппан - специалиста по фитопланктону.
В 1986 году Таппан опубликовала работу под названием "Фитопланктон: за солью на планетарном столе (Phytoplancton: below the salt at the global table)"; название это требует пояснения. В средневековом английском замке представители всех социальных слоев ели за общим длинным столом. Дворяне, рыцари и почетные гости сидели во главе, и большая солонка, стоящая примерно посередине стола, как бы отделяла их места от мест слуг, солдат и "гостей второй свежести", занимающих другой его конец; места эти называли, соответственно, "перед солью" и "за солью" ("above and below the salt"). Кушанья, как легко догадаться, подавали сперва на тот конец, что "перед солью", а "за соль" доходило - уж что останется...
Так вот, по мысли Таппан, наземная биота планеты всегда занимает место "во главе стола", а океанская - оказывается "за солью". Необходимые для жизнедеятельности фитопланктона биогены (прежде всего азот и фосфор) поступают с суши, за счет эрозии; наземная растительность, между тем, стремится подавить эрозию и оставить как можно больше биогенов для собственного потребления (помните - замыкание геохимических циклов?). Таким образом, все заметные эволюционные успехи наземной растительности замедляют поступление биогенов в океан, что со временем вызывает вымирание соответствующих групп фитопланктона; фитопланктон же - основа первого трофического уровня любых морских экосистем, так что дальше разваливается вся цепь. Следует помнить, однако, что инерция такой системы огромна, и между "прогрессивным изменением" в наземной растительности и вызванным им "фитопланктонным шоком" в океане проходит ощутимый срок.
Подойдя с этих позиций к пермо-триасовому и мел-палеогеновому морским вымираниям, мы увидим, что в поздней перми и в позднем мелу действительно произошли два серьезных изменения в структуре наземной растительности, прямо влияющие на регуляцию потока биогенов с суши. В перми высшая растительность впервые начинает заселять водоразделы, тормозя их прежде беспрепятственный размыв; этому способствует возникновение засухоустойчивых голосеменных (типа вольциевых) с пикноксилической древесиной и мелкими, сильно склеротизованными листьями (а также, как мы помним, появление насекомых с водными личинками - см. главу 9). В позднем мелу появляется трава, образующая дернину - наиболее эффективный из известных подавителей эрозии.
Что же касается импактов, то они, по всей видимсти, не представляют угрозы для сбалансированных, "здоровых" экосистем, но вот если те уже находятся в состоянии кризиса (вроде планктона, столкнувшегося с серьезными глобальными изменениями в порядке поступления биогенов), то кратковременная "астероидная зима" вполне способна сыграть роль "последней соломинки, ломающей спину верблюда". Тут возможна аналогия с выпадением соли из пересыщенного раствора: никому ведь не придет в голову считать причиной этого процесса упавший в сосуд кристаллик, непосредственно инициировавший его начало.


13. Кайнозой: наступление криоэры. Новые типы сообществ - тропические леса и травяные биомы. Эволюция млекопитающих и появление человека.
Мезозой, как мы помним из главы 9, был термоэрой и отличался "райским" климатом: теплым и выровненным по всей Земле, с ослабленным температурным градиентом между тропиками и полюсом. В рамках термоэр неоднократно происходили свои похолодания (например, в маастрихте), однако масштабы даже крупнейших из них не идут ни в какое сравнение с ледниковыми эпохами криоэр. В самом начале кайнозоя (в палеоцене и эоцене) климатическая ситуация оставалась еще прежней, мезозойской, а затем, в олигоцене, начались изменения, приведшие в конце концов к... так и тянет сказать: "к тому самому климатическому безобразию, в каковом мы теперь имеем счастье прозябать (в буквальном смысле этого слова)". Одной из главных причин этих изменений считают перестройку глобальной системы морских течений, вызванную дрейфом континентов, что затруднило теплообмен между полярными и экваториальными бассейнами.


Согласно моделям климатологов, наиболее интенсивный теплообмен будет достигнут при таком взаиморасположении материков и полюсов, когда планета имеет свободные от суши полюса и экватор (вдоль которого складывалась бы под действием кориолисовых сил единая экваториальная циркуляция). Меридионально развернутые материки, расположенные в средних широтах, отводят рукава экваториальной циркуляции в высокие широты, откуда вдоль противоположных их берегов возвращается в экваториальную зону холодная вода из полярных бассейнов - возвращается сразу, не застаиваясь в полярных циркуляциях. Как легко видеть (рисунок 53, а), мезозойская ситуация была в этом смысле близка к идеальной.
В кайнозое картина становится близка к обратной, и причиною тому - перемещения материков, на которые раскололся суперконтинент Гондвана (рисунок 53, б). К концу эоцена движущаяся на север Индия натыкается на Азию, а кора в месте их столкновения сминается в Гималаи. Чуть позже в Евразию втыкается с юго-запада Африка (с еще не отделившейся от нее Аравией) - в результате поднимаются горные хребты южной Европы и Иранское нагорье. Океан Тетис, отделявший в мезозое северные (лавразийские) материки от южных (гондванских) - а именно по нему тогда шла экваториальная циркуляция - исчезает; ныне от Тетиса остались лишь изолированные морские бассейны (Средиземное, Черное и южная часть Каспийского моря), не имеющие постоянной связи с мировым океаном [70]. В южном полушарии Антарктида последовательно отрывается от Австралии (эоцен) и Южной Америки (олигоцен), "наползает" на Южный полюс, а вокруг нее складывается замкнутая антарктическая циркуляция; все это приводит к тому, что в олигоцене в Трансантарктических горах возникают первые ледники, которые в миоцене покрывают единым ледяным щитом весь материк. В плиоцене возникает Панамский перешеек - соединяющий Южную Америку с Северной, но разделяющий Атлантический и Тихий океаны, - и глобальная экваториальная циркуляция оказывается полностью разрушенной (ныне мы имеем лишь один ее сегмент - в центральной части Тихого океана). Разрушение экваториальной циркуляции, возникновение "антарктического холодильника" на Южном полюсе и замыкание северного полярного бассейна - все это приводит тому, что в четвертичном периоде (в плейстоцене) на материках Северного полушария развиваются грандиозные покровные оледенения (см. главу 14).
Надо заметить, что отсутствие в мезозое холодных климатических зон давно не вызывает сомнения у палеоклиматологов. Однако они зачастую не обращают внимания на то, что при более равномерном, чем ныне, распределении тепла по поверхности планеты не должно было существовать и климата типа современного тропического. Но тогда и сообщества, сложившиеся в условиях не существовавших ранее типов климата (бореального с одной стороны и тропического - с другой), должны быть эволюционно наиболее молоды... Если в некий момент на полюсах стало "слишком холодно", а на экваторе - "слишком жарко", то реликты предыдущей эпохи имеют наилучшие шансы выжить прежде всего в субтропиках, господствовавших ранее по всей Земле. Специальный анализ, проделанный В.В. Жерихиным (1978), показал, что так оно и есть. Судя по всему, некоторые субтропические сообщества (такие, как, например, леса из южного бука в Новой Зеландии, южной Австралии и андийской Южной Америке) сохранили не просто отдельные реликты раннего кайнофита, а самую структуру раннекайнофитных биоценозов.
Что же касается тропических лесов (мы будем называть их южноамериканским словом гилея), то укоренившиеся представления о глубокой древности их биоты являются очередным "научным предрассудком"; они связаны в основном с тем, что понятие "тропики" зачастую употребляют нечетко. В астрономических тропиках - т.е. между тропиками Рака и Козерога - действительно есть сообщества с весьма архаичными элементами (например, индонезийские "туманные леса" из древовидных папоротников), однако все они приурочены к горам, и существуют, на самом деле, в условиях субтропического или даже умеренного климата. Если же рассмотреть лишь климатические тропики, т.е. экосистемы, реально существующие в условиях тропического климата (с температурой самого холодного месяца не менее 18њС) - гилею и саванны, то окажется, что их биота практически лишена архаичных черт. Мы уже упоминали (глава 12) об отсутствии в составе тропических лесов голосеменных, столь характерных для мезозойских сообществ; ныне те приурочены либо к субтропикам (саговники, араукарии, таксодиум), либо к умеренной зоне (секвойя, гинкго).
Подсчеты Жерихина показали, что практически все по-настоящему древние группы насекомых (такие, как скорпионницы или сетчатокрылые) избегают тропиков. Общее число семейств, не встречающихся в истинных, климатических, тропиках очень велико, тогда как чисто тропических (в этом смысле) семейств среди насекомых - как это ни удивительно - ничтожно мало. Разумеется, тропическая энтомофауна чрезвычайно богата, и есть множество преимущественно тропических семейств - однако почти все они эволюционно молоды и не обнаружены в ископаемых донеогеновых фаунах, либо представлены в них очень скудно.
Еще более интересны в этом плане приводимые Жерихиным (1980) данные по экологической структуре тропических лесов:
"Сообщества типа современной гилеи с их сложной ярусной структурой и высокой степенью полидоминантности [71] вообще не могут существовать без участия филогенетически молодых групп. Полидоминантность в вечнозеленых лесах [в отличие от листопадных - К.Е.] поддерживается только наличием специализированных опылителей (пчелы, антофильные птицы и рукокрылые), поскольку анемофилия эффективна лишь для самых высокоствольных деревьев...
Деструкция органического вещества как в гилейных, так и в саванновых сообществах производится прежде всего термитами... Препятствуя образованию подстилки и выраженного гумусового горизонта (и тем самым - развитого травяного яруса) они, по-видимому, обусловили превращение многих травянистых растений в эпифиты и формирование эпифитных консорций, очень типичных для гилеи. Распределяя органическое вещество в мощном слое почвенного профиля более или менее равномерно, они обеспечивают возможность развития корневых систем на самых различных уровнях, в том числе и глубоких, что позволяет существовать гигантским деревьям с глубоко погруженными корнями...
В вечнозеленых лесах, где листья, не сменяясь, существуют на дереве по нескольку лет, требуется эффективное предотвращение сильного повреждения листвы фитофагами; в противном случае деятельность листового насоса не сможет обеспечить существование дерева. Функцию подавления численности открытоживущих фитофагов выполняют чрезвычайно обильные в гилее муравьи..." Все перечисленные выше группы, "определяющие лицо" тропических экоситем - и опылители, и термиты, и муравьи - эволюционно очень молоды и не характерны для раннекайнофитных сообществ. Все это и привело Жерихина к заключению, что тропические сообщества - наравне с бореальными - принадлежат к числу самых молодых на Земле; судя по всему, они возникли не раньше эоцена, а окончательное их формирование произошло уже в неогене.
С уверенностью говорить о времени формирования гилейных экосистем трудно из-за очень слабой палеонтологической изученности современной тропческой зоны. Что же касается бореальных сообществ - например, криофильных (холодолюбивых) лесов с доминированием хвойных, типа тайги, - то они, по всей видимости, сложились в палеогене как высотный пояс в горах, а при неогеновом похолодании широко распространились на равнинах Северного полушария. В палеонтологической летописи они впервые достоверно появляются в верхнем миоцене Канадского архипелага (остров Миен); их состав напоминал современные лесотундровые редколесья.
Еще одна характерная для кайнозоя черта - травяные биомы (типа степей и саванн), существование которых основано на коэволюции злаков и крупных травоядных млекопитающих: при ряде условий (в засушливых и малоплодородных районах) животные способны воспрепятствовать восстановлению лесной растительности. В доэоценовые времена, судя по пыльцевым спектрам, сообществ такого типа на Земле не было. По мнению Жерихина (1993), эти биомы первоначально представляли собою сериальные сообщества, ведущие к соответствующим древесным климаксам (стадии с господством трав - например, луга - имеются во всех современных сукцессионных системах), однако затем возникла уникальная ситуация: фитофаги, изымая прирост биомассы (в современных степях это изъятие доходит до 60% растительной продукции - абсолютный рекорд), оказались способны остановить экогенетическую сукцессию на безлесой стадии. Дальнейшая коэволюция млекопитающих и трав привела к стабилизации этих своеобразных "зоогенных климаксов" : необходимый для климаксного сообщества нулевой баланс по органике обеспечивается в них именно деятельностью животных-фитофагов. Основные черты, отличающие эти травяные климаксы и от сериальных травяных сообществ, и от лесов - исключительно высокая продуктивность, очень быстрый оборот органического вещества и наличие легко мобилизуемого запаса этой органики в необычайно плодородных почвах (типа черноземов).
Известно, что основой существования этих сообществ является замечательная коадаптация доминирующих в растительном покрове злаков и фитофагов: злаки не имеют эффективной защиты от поедания (вроде колючек, ядовитости и т.п.), зато способны компенсировать обгрызание надземных частей резким ускорением их регенерации. Поэтому регуляция в таком сообществе достигается предельно просто: при снижении пресса фитофагов первичная продукция тоже автоматически снижается - и наоборот. Основную роль в пастбищных цепях этих экосистем играют млекопитающие, прежде всего - различные копытные (потомки кондиляртр - рисунок 55, а) и хищные (потомки креодонтов - рисунок 56, а); об эволюции сообщества позвоночных - чуть далее. Иное дело - детритные цепи. Возникновение стабильных травяных сообществ было бы просто невозможно без появления целого комплекса насекомых-копрофагов, перерабатывающих огромную массу экскрементов травоядных [72]. В более древних (палеогеновых) лесных сообществах, где млекопитающие не достигали такой биомассы, как пастбищные копытные, с этой работой справлялись низшие навозники. Важнейшие же современные группы копрофагов (высшие навозники и навозные мухи) в заметных количествах появляются в захоронениях с конца олигоцена. В это же время складывается и не менее важный комплекс насекомых-некрофагов (мясные мухи и жуки-мертвоеды), ответственный за эффективную переработку трупов травоядных млекопитающих.
Сообщество наземных позвоночных в кайнозое развивалось независимо на трех разобщенных территориях, фаунистические контакты между которыми практически отсутствовали. Австралия (с ее сумчатыми и однопроходными) изолирована и поныне, а Южная Америка сохраняла свою обособленность от остальной суши вплоть до плиоцена, когда возник Панамский перешеек; отсюда и проистекает современное разделение мира на три зоогеографические области: Нотогея (Австралия), Неогея (Южная Америка) и Арктогея (Евразия, Африка и Северная Америка). Так вот, по мнению Жерихина (1993), во всех этих трех областях травяные биомы возникали независимо, на базе совершенно различных комплексов крупных млекопитающих; собственно говоря, есть серьезные основания полагать, что млекопитающие по-настоящему вышли в крупный размерный класс лишь в травяных биомах.


Раньше всего (в среднем эоцене) этот процесс начался в Южной Америке. Там среди исходно листоядных "южноамериканских копытных" [73] возникают первые травоядные формы, а также появляются гигантские травоядные броненосцы-глиптодонты, смахивающие на небольшой танк (рисунок 54, а). В среднем же эоцене в Южной Америке впервые обнаруживаются и пыльцевые спектры с высоким содержанием пыльцы злаков, палеопочвы степного типа, а также фоссилизированные навозные шары, принадлежащие жукам-навозникам. Позднее, в олигоцене и особенно в миоцене, здесь возникает в высшей степени своеобразный комплекс пастбищных травоядных. Он включал неполнозубых (глиптодонтов и наземных ленивцев), "южноамериканских копытных" (различные литоптерны демонстрирует сильное конвергентное сходство частью с лошадьми, частью с верблюдами, у пиротериев много общего со слонами, а среди нотоунгулят были формы, схожие и с носорогами, и с бегемотами, и с кроликами - риснок 54, б-г), а также гиганских кавиморфных грызунов (некоторые из этих родственников морской свинки достигали размеров носорога) и просуществовал вплоть до установления в плиоцене сухопутной связи с Северной Америкой.
Что же касается хищников, то они в древней южноамериканской фауне всегда были в дефиците. Ни один из здешних отрядов плацентарных по не вполне понятным причинам так и не дал плотоядных форм - эту роль исполняли исключительно сумчатые. Довольно разнообразные боргиениды несколько напоминали собак (а еще больше - тилацина, тасманийского "сумчатого волка"), а тилакосмилюс вполне заслуживает названия "сумчатый саблезубый тигр" и являет собою поразительный пример конвергенции с саблезубыми кошками Северного полушария (рисунок 54, д-е). Дефицит маммальных хищников (на "несбалансированность" здешних фаун обратили внимание А.С. Раутиан и Н.Н. Каландадзе, 1987) привел к тому, что эту нишу заполняли самые неожиданные персонажи. Так, с палеоцена по миоцен здесь существовали себекозухии - сухопутные крокодилы с высокой и узкой мордой (предполагают, что их образ жизни напоминал современных комодоских варанов), а в эоцене появились дожившие до плейстоцена фороракосы - гигантские (до 3 м ростом) нелетающие хищные птицы, принадлежащие к журавлеобразным.
В Австралии (Нотогее) формирование травяного биома началось много позже, в неогене; здесь явно сыграл роль дрейф этого континента по направлению от полюса к экватору - в результате значительная часть его территории попала в условия засушливого климата. Основу здешнего сообщества пастбищных млекопитающих составили крупные травоядные сумчатые - кенгуру и вымершие на памяти человека дипротодонты (их иногда, из-за двух крупных резцов, не слишком удачно называют "кроликами ростом с носорога"). Как и в древней южноамериканской фауне, здесь отчетливо прослеживается дефицит хищников: известны лишь два крупноразмерных хищных млекопитающих - тилацин (тасманийский сумчатый волк) и древесный тилаколео (которого по аналогии можно назвать "сумчатым леопардом"). Недостаток маммальных хищников возмещался (опять-таки как в Южной Америке) за счет рептилий: исполинских варанов-мегаланий длиною до 7 м и сухопутных крокодилов, сходных по образу жизни с себекозухиями; хищных нелетающих птиц здесь не возникло, однако некоторые из австралийских страусов, судя по всему, выполняли роль падальщиков.


Третий случай формирования травяного биома - Арктогея. Здесь ситуация осложняется тем, что он формируется на единой таксономической основе (кондиляртровой), но, судя по всему, независимо в Евразии и в Северной Америке. Сообщество пастбищных млекопитающих первоначально составляют непарнокопытные (тапиры, носороги в широком смысле и халикотерии [74]) и нежвачные парнокопытные (свинообразные и верблюды); чуть позже к ним добавляются примитивные трехпалые лошади и жвачные парнокопытные (олени) (рисунок 55). Помимо потомков кондиляртр нишу крупных растительноядных пытались освоить лишь диноцераты - специализированые потомки каких-то крайне примитивных териевых млекопитающих (рисунок 55, б), однако уже в эоцене эта группа полностью вымерла. Единство комплекса "северных" копытных достаточно высоко; самое же интересное состоит в том, что хотя практически все эти группы имеют американское происхождение (они проникали в Евразию через Берингию - области вокруг Берингова пролива, где тогда обсыхали обширные участки шельфа), травяные биомы с их участием в Азии начинают складываться заметно раньше, чем в Америке. В Центральной Азии саванны возникают уже в конце эоцена (появившиеся в это время гигантские безрогие носороги вроде индрикотерия - "гибрид слона и жирафа", самое крупное наземное млекопитающее, 6 м в холке - явно обитали в открытом ландшафте, а не в лесу), тогда как в Америке это происходит в олигоцене. Что касается Африки, то здесь травяных биомов, судя по всему, не существовало до миоцена; парнокопытные и непарнокопытные проникли сюда из Евразии сравнительно поздно, а эндемичные для этого континента хоботные (слоны и мастодонты) были в это время мелкими и чисто листоядными и, видимо, не могли удерживать сукцессию на безлесой стадии.
Что касается хищных млекопитающих, то на Севере они, в отличие от Южных континентов, были только плацентарными: сумчатые вообще существовали здесь очень недолго, и так и не сумели выйти из ниши мелких насекомодных. До того, как здесь появились специализированные плотоядные формы из креодонтов (рисунок 56, а) и современных хищных (Carnivora), в этой роли подвизались своеобразные копытные - мезонихиды (рисунок 56, б-в) Мезонихиды были всеядными существами (как полагают, "более плотоядными, чем кабан, но менее плотоядными, чем медведь"); они часто достигали размеров гиены, а эндрюсарх из палеоцена Монголии был крупнейшим наземным хищным млекопитающим - его череп достигает в длину 85 см [75]. Как это ни удивительно, именно от мезонихид ведут свое происхождение китообразные.


До олигоцена ситуация в травяных биомах Арктогеи и Южной Америки развивалась параллельно. И там, и там основными травоядными являлись копытные - потомки различных кондиляртр (на Севере - непарно и парнокопытные, на Юге - "южноамериканские копытные"). И там, и там хищники были явно примитивнее своих жертв (на Юге - сумчатые, на Севере - архаичные всеядные копытные, мезонихиды) - расклад, разительно отличающий палеоген от мезозоя. И там, и там дефицит маммальных хищников возмещался за счет рептилий и птиц: сухопутных крокодилов (на Юге - себекозухии, на Севере - баурузухии) и гигантских нелетающих журавлеобразных (на Юге - фороракосы, на Севере - диатримы). Ситуация эта радикально изменилась, когда на эволюционную сцену вышли современные хищные (отряд Carnivora), и лучше всего это видно как раз по немедленному исчезновению в олигоцене всех этих "эрзац-хищников" - всеядных мезонихид, сухопутных крокодилов и диатрим, а также креодонтов (предков карнивор). Интересно, что в то же самое время исчезают и архаичные некопытные растительноядные - диноцераты.
В миоцене единство территорий Северного полушария возрастает: возникает прямой транссредиземноморский контакт между Европой и Африкой, исчезновение Тургайского моря на месте Западно-Сибирской низменности облегчает миграции между Европой и Центральной Азией, а главное - возникают открытые ландшафты в чисто лесной доселе Берингии, и эта территория превращается для степных фаун Азии и Америки из "фильтра" в "коридор". С этого времени травяной биом становится фактически единым по всей Арктогее, и при этом каждая из территорий вносит свой вклад в становление его фауны, обретающей уже вполне современные черты.
Из Америки приходят травоядные (в смысле - не листоядные) лошади, из Азии - полорогие (быки и антилопы) [76], из Африки - хоботные (слоны и мастодонты); вместе с еще некоторыми группами копытных, как "новыми" (жирафы и бегемоты), так и "старыми" (носороги), они формируют так называемую гиппарионовую фауну (гиппарион - одна из трехпалых лошадей). Та же картина и с входящими в гиппарионовую фауну хищными: кошки произошли в Америке, псовые - исходно - тоже, однако стайную социальную организацию (ставшую для этой группы ключевым фактором успеха) приобрели уже в Азии, гиеновые (тогда среди них были не только падалеяды, но и активные хищники типа гепарда) - в Африке. Интересно, что кошки исходно были саблезубыми; позже, в миоцене, возникли кошки современного типа, однако возврат к саблезубости (что, очевидно, дает преимущества при охоте на крупную добычу с особо прочной шкурой) происходил у кошачьих многократно и независимо.
В начале плиоцена (7-8 млн лет назад) самой природой был поставлен грандиозный эволюционный эксперимент: установилась сухопутная связь между Северной и Южной Америками через Панамский перешеек, и их фауны - североамериканская (являющаяся частью Арктогеи) и южноамериканская (пребывавшая весь кайнозой в условиях островной изоляции) - вступили в прямой контакт между собой. Произошло перемешивание фаун: на Севере появились сумчатые, неполнозубые (броненосцы, глиптодонты и наземные ленивцы), кавиморфные грызуны и фороракосы, а на Юге - высшие грызуны (хомякообразные), непарнокопытные (лошади и тапиры), парнокопытные (свинообразные, верблюды и олени), хоботные (мастодонты) и хищные (еноты, куньи, псовые, медведи и кошки). Окончательные результаты Великого американского обмена (как назвал эти события Дж. Симпсон, 1983) оказались, однако, для Севера и Юга весьма различными. Североамериканская фауна просто-напросто обогатилась тремя экзотическими "иммигрантами" - опоссумом, девятипоясным броненосцем и древесным дикообразом, - тогда как на Юге произошла настоящая катастрофа, почище любых астероидных импактов: здесь полностью вымер весь пастбищный комплекс из "южноамериканских копытных", гигантских кавиморфных грызунов, хищных сумчатых и фороракосов, не выдержавших конкуренции с высшими копытными и карниворными хищниками (рис 57). Надо полагать, что судьба австралийских сумчатых и однопроходных - возникни у этого континента прямой сухопутный контакт с Азией - была бы столь же незавидной... Вообще в истории Великого американского обмена легко усмотреть прямые (и печальные) аналогии с человеческой историей: вспомним, чем обернулся "контакт" с европейской цивилизацией для древних самобытных культур доколумбовой Америки и Черной Африки.
РИСУНОК 57. "Великий американский обмен". Диаграмма замещения "южных" копытных на территории Южной Америки: в прямоугольниках - число родов, на шкале слева - ярусы южноамериканской региональной шкалы.
Кстати, раз уж речь зашла о человечестве... Согласно современным взглядам, человек (как биологический вид) возник именно в травяном биоме: наши обезьяньи предки [77] входили в состав гиппарионовой фауны. Первые гоминиды появились в конце миоцена (5-6 млн лет назад) на территории Восточной Африки. В прежние годы полагали, что гоминиды обособились среди прочих человекообразных обезьян много раньше, в среднем миоцене (12-15 млн лет назад), и не в Африке, а в Азии (тогда среди прямых предков человека числили индийского рамапитека). Сейчас, однако, полагают, что многие крупные миоценовые приматы (азиатские рамапитек и сивапитек, африканский кениапитек, южноевропейский оранопитек) приобрели "человеческие черты" строения параллеоьно с гоминидами. Палеоантрополог Р. Фоули (1990) пишет: "Рамапитек, после того как ему было отказано в принадлежности к гоминидам, пополнил ряды избранного общества несостоявшихся предков человека, каждый из членов которого обладал, как поначалу полагали, какой-нибудь уникальной чертой гоминид"; очевидно, мы в очередной раз имем дело с процессом, который - по аналогии - можно назвать гоминизацией приматов.
Первые гоминиды - австралопитеки - были небольшими прямоходящими существами (весом 25-50 кг); самцы их были почти вдвое крупнее самок - этот резкий половой диморфизм наводит на мысль о том, что они, подобно многим современным приматам, передвигались стаями, не образуя постоянных семей. Около 2,5-3 млн лет назад среди австралопитеков обособились две ветви - робустная (с массивным скелетом, крупными зубами и сильно выступающей челюстью) и грацильная (с легким сложением и относительно большим объемом черепной коробки); робустные виды (Australopithecus robustus, A.boiseni, A.crassidens) были почти чисто растительноядными, тогда как грацильные (A.afarensis, A.africanus) стали широко использовать животную пищу. Именно среди грацильных австралопитеков обособился 2,5 млн лет назад первый представитель рода Homo - Homo habilis, "человек умелый", названный так за способность к изготовлению каменных орудий (первые гальки со следами обработки найдены в слоях возраста 2,5-2,7 млн лет). Он отличался от австралопитеков возросшим объемом черепной коробки и строением таза, обеспечивавшим более совершенную бипедальность и рождение более "головастых" детенышей.
Итак, человек появился в плиоценовой африканской саванне с ее сухим жарким климатом и с изобилием как копытных и хоботных, так и питающихся ими крупных хищников. От обезьян (и от прочих животных) человека отличает кожа, практически лишенная волосяного покрова, но снабженная огромным количеством потовых желез. Уровень потоотделения у человека во много раз превосходит все, что известно в животном мире, и служит чрезвычайно эффективным механизмом теплосброса (за что, правда, приходится платить жесткой связью с источниками воды). По мнению Р. Фоули (1990), именно этот терморегуляторный механизм плюс прямохождение (вертикально стоящий человек получает на треть меньше энергии от солнечных лучей, чем четвероногое животное) позволили первым людям занять в сообществе саванны совершенно уникальную экологическую нишу "полуденного хищника", выйдя из-под безнадежной конкуренции с крупными кошками, которые активны в сумерках, а днем спят.
Первые люди были, судя по всему, не столько охотниками, сколько падалеядами, вроде гиен. Впервые появившиеся каменные орудия были наиболее полезны именно для разделки туш очень крупных толстокожих млекопитающих. "Такие звери, обычно неуязвимые для хищников, часто лежат нетронутыми некоторое время после смерти, т.к. другие животные не могут разорвать их кожу и добраться до мяса. Вполне вероятно, что при помощи каменных орудий гоминиды могли первыми начать разделку таких туш и, таким образом, [...] одерживали верх в конкуренции с другими животными, питавшимися падалью" (Р. Фоули, 1990). Каменные орудия, возможно, выполняли ту же функциональную роль, что и огромные клыки саблезубых кошек - их многие палеонтологи считают трупоедами.
Одна из форм внутривидовой кооперации, отличающей человека от прочих животных (включая приматов) - способность делиться пищей; ее считают одной из фундаментальных черт человеческого общества, возникшей (по археологическим данным) уже у плиоценовых гоминид. Видимо, это есть результат разделения труда: вследствие полового диморфизма самцы и самки порознь занимаются поисками пищи (первые - животной, вторые - растительной), после чего следует неким образом поделить собранную добычу. В дальнейшем возникает необходимость в специальном месте, где этот дележ и происходит - иными словами, в жилище. Судя по всему, жилище, разделение труда и дележ пищи возникают уже на самых начальных этапах эволюции человека. Другой комплекс характерных для людей поведенческих реакций связан с заботой о потомстве. Потомство человека зависит от других людей (в первую очередь - от родителей) много дольше, чем у любого другого примата. Одно из следствий этого - высокая степень взаимозависимости человеческих индивидуумов; это касается не только детей, но и самих взрослых, которых объединяет присутствие малышей, нуждающихся в заботе. Доказательством замедленного созревания детенышей мог бы служить характер прорезывания зубов - и ранние гоминиды действительно демонстрируют это свойство. Все это приводит к тому, что основой человеческого поведения становится кооперация между индивидуумами.
Другая (в некотором смысле зеркальная) черта, отличающая гоминид - категорическая неспособность ужиться со своей "дальней родней": виды рода Homo сугубо аллопатричны, т.е. не сосуществуют сколь-нибудь продолжительное время. В раннем плейстоцене (1,6 млн. лет назад) на смену "человеку умелому" пришел "человек прямоходящий" - Homo erectus, которого прежде называли питекантропом; именно в это время полностью вымирают австралопитеки. Примерно 1,2-1,0 млн лет назад "человек прямоходящий" вышел за пределы Африки и заселил южную Азию и Европу, а 0,4 млн лет назад исчез, освободив место для "человека разумного" - Homo sapiens. Термином "архаичные" Homo sapiens обозначают людей, живших в интервале 300-40 тыс лет назад; наиболее известны из них европейские неандертальцы (возраст 70-30 тыс лет) - низкорослые, массивного сложения, с выступающей челюстью, но с мозгом даже более объемистым, чем у современного человека. Homo sapiens современного типа (кроманьонец) появился около 100 тыс лет назад - и опять в Восточной Африке; он заселил Европу 30-40 тыс лет назад и вытеснил неандертальца (злые языки бестактно уточняют - "съел"), практически не смешиваясь с ним.
Вопрос о разумности видов Homo, предшествующих нашему, сводится лишь к спору о терминах ("А что есть разум?.."). Во всяком случае, хабилисы уже изготавливали каменные орудия (2,5 млн лет назад), поздние питекантропы пользовались огнем (0,5 млн лет назад), а неандертальцы хоронили своих умерших, совершая сложные погребальные обряды, и создавали произведения изобразительного искусства.
Вот замечательный сюжет для любителей так называемой "альтернативной истории": 100 тысяч лет назад Африка оказывается начисто изолированной от остального мира (как это действительно произойдет в будущем, через пару миллионов лет - когда до конца раскроется Красноморский рифт), и на планете возникают две цивилизации - кроманьонская в Африке и неандертальская в Евразии. И как знать - может быть, флегматичные неандертальцы создали бы что-нибудь более пристойное, нежели то, что мы видим вокруг себя... Впрочем, вряд ли; скорее всего, дело и тут закончилось бы кроманьонской конкистой с "окончательным решением неандертальского вопроса".


14. Четвертичный период (антропоген): Великое оледенение. Ледниковая теория. Перигляциальные сообщества и мамонтовая фауна.


Четвертичный период, или антропоген - самый последний отрезок кайнозоя, начавшийся около 2 млн лет назад. Наиболее существенная черта этого времени - существование в высоких широтах нашей планеты покровных оледенений; во время ледниковых эпох они распространялись на юг до 40-х широт (рисунок 58), а во время межледниковий - "съеживались" до примерно нынешнего состояния (когда ими покрыта лишь Антарктида в Южном полушарии и Гренландия - в Северном). Разделение четвертичного периода на плейстоцен ("Великое оледенение") и начавшийся 10-12 тыс лет назад голоцен (время, в которое мы живем) в значительной степени условно: часто говорят, что на самом деле голоцен - это просто-напросто одно из плейстоценовых межледниковий, причем даже не самое крупное.
Вероятно всем вам доводилось встречать где-нибудь на краях полей и лесных опушках окатанные гранитные валуны, иногда с характерной "штриховкой" - хотя никаких скальных выходов в окрестностях нет и в помине. По нынешнему времени любой школьник знает, что эти эрратические (т.е. блуждающие) валуны, часто достигающие размеров танка, были перенесены от мест выхода соответствующих скальных пород движением древнего ледника, покрывавшего некогда обширные территории Европы и Северной Америки. Однако в 1837 году, когда швейцарский геолог Л. Агассис выдвинул свою теорию существования в истории Земли ледникового периода, основываясь именно на сходстве между эрратическими валунами равнинной Европы и теми окатанными штрихованными булыжниками, что на наших глазах вытаивают из-под краев альпийских ледников, его только что не подняли на смех. Дело в том, что в те времена не только широкая публика, но и геологи не сомневались, что все эти валуны разносились чудовищными потоками воды и грязи, связанными с библейским Всемирным потопом.
Здесь необходимо сделать одно замечание. Читатель современных учебников и популярных книжек зачастую выносит из них впечатление, будто все геологи-дилювиалисты, считавшие эрратические валуны и другие ледниковые (как это теперь нам известно) отложения "наносами" (дилювием) Всемирнного потопа, были либо недоумками, либо религиозными мракобесами. Вот уж неправда! Да, конечно, Церковь освящала своим авторитетом теорию потопа. Да, конечно, выдающийся британский геолог У. Бакленд в торжественной лекции, открывавшей его курс в Оксфорде и названной "Объяснение связи между геологией и религией", выражал убежденность в том, что главная цель геологической науки - "...Подтвердить данные религии и показать, что известные ей факты согласуются с описанием сотворения Мира и Потопа, которые мы находим в заповедях Моисея". Однако в том-то и дело, что аргументация дилювиалистов была при этом именно научной, а не теологической (основанной на комментировании священных текстов).
Так, в 1821 году Бакленд исследовал найденные в одной из йоркширских пещер скелеты гигантских гиен, а также разрозненные кости 23 вымерших видов млекопитающих (львов, слонов, бегемотов и пр.), и пришел к выводу, что пещера была гиеньим логовом, затопленным Всемирным потопом. Положение костей и их соотношение с перекрывающим их неслоистым суглинком свидетельствовало, по его мнению, о том, что допотопные звери действительно утонули; изучив же сталагмиты, выросшие поверх осадка, он установил, что возраст потопа - пять-шесть тысяч лет, что замечательно совпадает с библейскими "датировками". Заключения Бакленда относительно конкретного седиментогенеза [78] впоследствии оказались ошибочными, однако методологически эти его построения совершенно корректны. Или другой пример. Предполагалось, что транспортировку эрратических валунов на сотни километров обеспечивали гигантские волны; они возникали лишь при Потопе, и в настоящее время ничего похожего в природе не наблюдается. Возможная динамика этих волн - их называли "волнами трансляции" - стала предметом тщательного анализа; гидродинамические расчеты, выполненные математиками Кембриджского университета, дали точные характеристики глубин и скоростей течения водных масс потопа [79]. Кроме того, в 1833 году Ч. Лайелль модифицировал классическую теорию: в рамках его дрифтовой гипотезы эрратические валуны транспортировались не текущей водой, а дрейфующими льдами, и отлагались по мере их таяния: к тому времени полярным исследователям уже было известно, что айсберги иногда содержат вмерзшие в лед валуны.
Однако ни лайелева гипотеза, ни классическая концепция неспособны были объяснить целый ряд фактов. Так, из гипсометрического (высотного) распределения "дрифтовых" наносов следовало, что уровень Океана некогда повышался на 1,5 км. Но откуда же бралась вся эта вода и куда она подевалась потом? Тут уж дилювиалистам приходилось прибегать к совершенно фантастическим допущениям: массы воды изливались у них из колоссальных подземных резервуаров, а потом столь же внезапно поглощались неведомыми пустотами; гигантская комета задевала земную поверхность, порождая приливные волны, перехлестывавшие через высочайшие горы и т.п. Неудивительно, что гляциальная теория Агассиса, наглядно демонстрировавшая, каким именно образом эрратические валуны, морены (несортированные массы гравия, камней и глины) и прочие "следы потопа" на наших глазах отлагаются горными ледниками, через некоторое время одержала решительную победу; ее приняли даже такие оппоненты Агассиса, как упомянутые выше Лайелль и Бакленд (что в науке случается не так уж часто). Более того: иногда шутят, что перешедший на гляциалистские позиции Бакленд с его гигантским научным авторитетом сыграл для распространения ледниковой теории примерно такую же роль, как император Константин - для христианства.
Путем наблюдения за современными гляциальными процессами установлено, что ледники образуются из снега в местах, где он скапливается в количествах, превышающих летнее таяние. Снег слеживается в плотный фирн, а когда толщина снежного пласта достигает тридцати метров, нижние его слои под собственным весом начинают обращаться в чистый лед. Лед обладает замечательным свойством: под давлением он начинает "течь", создавая водяную "смазку", понижающую трение (благодаря чему мы можем кататься на коньках). Дальнейшее увеличение толщины снежно-ледяных масс ведет к тому, что они начинают медленное движение, которое будет тем быстрее, чем толще ледник (и, соответственно, чем выше создаваемое им давление). Движущийся лед способен не только захватывать свободно лежащие обломки и мелкозем, но и отрывать целые глыбы коренных пород. Валуны, щебень и песок, вмороженные в придонные слои движущегося ледника, выполняют роль гигантского напильника, который сглаживает и шлифует (а местами, наоборот, царапает) каменные поверхности, служащие ледниковым ложем. При этом подо льдом формируются своеобразные толщи валунных суглинков и песков, отличающиеся высокой плотностью, связанной с воздействием ледниковой нагрузки - основная, или донная морена.
Размеры ледника определяются равновесием между количеством ежегодно выпадающего на него снега и той его долей, что успевает растаять и испариться за теплые сезоны. При потеплении климата края ледников отступают на новые - равновесные - рубежи. Концевые части ледниковых языков "мертвеют", их лед перестает двигаться и постепенно стаивает. Включенные ранее в "мертвый" лед валуны, песок и суглинок высвобождаются, образуя вал, повторяющий очертания ледника - конечную морену; другая часть обломочного материала (в основном песок) выносится потоками талой воды и отлагается вокруг в виде флювиогляциальных равнин (зандров). Со временем геологи выяснили, что подобные потоки практически так же действуют и в глубине ледников, заполняя флювиогляциальным материалом трещины и внутриледниковые каверны. После стаивания ледниковых языков с такими заполненными пустотами на земной поверхности остаются - поверх вытаявшей донной морены - хаотические нагромождения холмов различной формы и состава: яйцевидные (при виде сверху) друмлины, вытянутые на манер железнодорожных насыпей вдоль оси ледника (и перпендикулярно конечным моренам) озы и неправильной формы камы. Замечательно четко все эти формы ледникового ландшафта представлены в Северной Америке: граница древнего оледенения маркирована здесь конечноморенным валом с высотами до пятидесяти метров, протянувшимся поперек всего континента от восточного его побережья до западного. К северу от этой "Великой китайской стены" ледниковые отложения представлены в основном мореной, а к югу от нее - плащом флювиогляциальных песков и галечников.
Поначалу геологи полагали, что покровное оледенение возникло на Земле лишь однажды (как и Потоп): ледник надвинулся, а затем отступил в свое нынешнее положение, оставив на память о себе все эти моренные гряды, камовые холмы и зандровые поля. Впоследствии, однако, обнаружили свидетельства многократности оледенений: заключенные между разновозрастными слоями морены слои торфа и даже гумусированные почвенные горизонты. Для образования почвы подобного рода необходимы достаточно теплый климат и обильная растительность - значит, холодные ледниковые эпохи (когда отлагались морены) перемежались с теплыми межледниковьями. В 1909 году А. Пенк и А. Брюкнер установили, что изученные ими древние галечные террасы с бортов альпийских речных долин аккумулировались в ледниковые эпохи (когда интенсивное морозное выветривание и отсутствие растительности ускоряли эрозию), а в теплые межледниковья начинался их размыв. Они выделили для Центральной Европы четыре ледниковые эпохи, названные по соответствующим альпийским речкам - гюнц, миндель, рисс и вюрм. Впоследствии сходная последовательность плейстоценовых событий была установлена и для остальных территорий Северного полушария: в Восточной Европе различают окское (лихвинское), днепровское, московское и валдайское оледенения, в Северной Америке - небраскское, канзасское, иллинойсское и висконсинское.
Итак, подтвердив и развив теорию Агассиса, геологи оказались перед лицом проблемы - в чем же причина оледенений? Что вызывало рост ледниковых покровов прошлого, и почему, распространившись почти на треть суши, они вдруг начинали отступать? "Астрономические" гипотезы усматривали причину этих изменений в периодическом сокращении количества тепла, поступающего на Землю от Солнца. Другая группа гипотез акцентировала внимание на том, что оледенение - лишь одно из звеньев глобальной климатической системы, и система "ледниковый щит - океан - атмосфера" работает как единая гигантская машина; суть дела, заключали они, не в количестве тепла, поступающем на Землю, а в том, насколько равномерно это тепло распределено по поверхности планеты.


Солярная гипотеза, предполагающая периодические падения светимости Солнца, не имеет ныне сторонников: согласно мнению астрофизиков, звезды спектрального класса G-2, к которому относится наше Солнце, к подобным глупым шуткам совершенно не склонны. Зато весьма популярна теория астронома М. Миланковича (1924), связывающая оледенения с изменениями летней инсоляции (поступления солнечной радиации) в высоких широтах обеих полушарий, что, в свою очередь, обусловлено циклическими изменениям трех параметров орбитального движения Земли вокруг Солнца (вариациями наклона земной оси и пр.). Сделав поправки на эффекты менявшегося альбедо (отражательной способности земной поверхности), он рассчитал сдвиги в географическом положении границ ледниковых покровов за последний миллион лет, которые неплохо совпали с периодизацией европейских оледенений. Как на инсоляционных кривых Миланковича, так и на палеоклиматическом графике Пенка и Брюкнера ледниковые эпохи запечатлелись в виде коротких резких пульсаций, отделенных друг от друга длинными интервалами, и при этом "Великое межледниковье" (между минделем и риссом) занимает на графике то же место, что и предсказанный Миланковичем длительный теплый интервал (рисунок 59). Впоследствии картина оказалась гораздо более сложной, чем это представлялось в тридцатые-сороковые годы, однако ныне существование 100 000-летних климатических циклов, порождаемых орбитальными возмущениями, имеет вполне солидное обоснование.
Теория Миланковича (в ее современных вариантах) удовлетворительно описывает динамику похолоданий и потеплений внутри ледникового периода, однако, к сожалению, не отвечает на вопрос о наступлении самого этого периода: вполне очевидно, что вся эта астрономическая циклика была точно такой же и в предшествующие плейстоцену эпохи, но никаких оледенений при этом не порождала. Поэтому с середины 50-х годов стал расти интерес к "земным" гипотезам оледенений, переносящим акцент на динамические взаимодействия в системе "оледенение - океан - атмосфера"; мы уже упоминали об "обратных парниковых эффектах", порождаемых изменениями атмосферного соотношения CO2/O2, и о работе морских течений при различном расположении материков.
Одной из самых интересных представляется гипотеза климатологов М. Юинга и У. Донна (1956). Задавшись вопросом - а почему оледенение не возникает сейчас, когда температурные условия Арктики вроде бы вполне тому благоприятствуют, - они сочли это следствием дефицита осадков [80]. Главный тезис их гипотезы: решающее условие возникновения оледенения в Арктике - усиление притока несущих влагу воздушных масс и усиление снегопадов; от этого ледник начинает нарастать, альбедо увеличивается, температура падает... ну, дальше - ясно. Вопрос: что же за фактор повышал влажность в арктических широтах? Ответ: освобождение Ледовитого океана от его ледового панциря в результате усиления притока теплой воды из Северной Атлантики. При отсутствии покрова морских льдов этот океан должен становиться мощнейшим испарителем, воздух над ним - "заряжаться" водяным паром, а интенсивность снегопадов на окружающей сушей - резко возрастать; рост альбедо доводит падение температуры до ледниковой эпохи. А вот дальше - самое интересное; в некоторый момент похолодание достигает той точки, когда Ледовитый океан вновь замерзает, и тогда начинается дегляциация: потеряв главный источник атмосферного питания, ледниковые покровы начинают "съеживаться". Ледник тает, и при этом уровень океана повышается, ветви теплого Северо-Атлантического течения вновь прорываются в Арктику, растапливают ее морские льды - и цикл начинается по новой.
Существование этой парадоксальной автоколебательной системы, в которой оледенение порождается потеплением, а дегляциация - похолоданием, нашло недавно косвенное подтверждение при изучении донных отложений Атлантики: оказалось, что в плейстоцене Гольфстрим периодически исчезал; при этом выяснилось, что усиление Гольфстрима действительно совпадает с периодами похолоданий, и наоборот. Вообще один из главных вопросов, на которые приходится отвечать "земным" гипотезам (подразумевающим примерное постоянство инсоляционного баланса планеты) - каким образом прекращается разрастание ледника, процесс, который по идее должен идти с положительной обратной связью? Ведь рост ледника приводит (через увеличение альбедо) к падению температуры, что еще увеличивает ледник - и так до тех пор, пока льдом не покроется вся планета... Один из наиболее убедительных ответов состоит в том, что по достижении ледником некого порогового размера над ним (именно из-за высокого альбедо) возникает постоянно действующий антициклон (область высокого атмосферного давления), который усиливается по мере роста ледника и в конце концов лишает его "питания" - осадков. Таким образом, климат перигляциальных (окружающих ледник) территорий должен быть холодным и сухим - что полностью подтверждается палеонтологическими данными. В этих ландшафтах складываются весьма специфическая фаунистическая группировка с сочетанием криофильных (холодолюбивых) и ксерофильных (сухолюбивых) элементов, которую А.Я. Тугаринов (1929) назвал тундростепной; типично тундровые (влаголюбивые) элементы встречаются здесь лишь близ водотоков.
Сейчас группировки, сходные с перигляциальными, сохранились в виде так называемых реликтовых степей - островков среди таежного и лесотундрового ландшафта, приуроченных к южным склонам гор северо-восточной Сибири и Аляски, а также в холодных засушливых высокогорьях Центральной Азии (здесь их называют "пастбищем яков"). Реликтовые степи, так же как и тундра, представляют собой безлесые сериальные стадии к хвойным таежным климаксам - соответственно, ксеро- и гидросерию; соотношение площадей, занимаемых в ареале сукцессионной системы сообществами ксеро- и гидросериального ряда, определяется климатической ситуацией. В перигляциальном ландшафте, где вся вода вымерзает на массе ледника (как в морозилке холодильника) и ситуация складывается фактически аридная, доминируют криоксерофильные тундростепи, а настоящие тундры существуют лишь в виде приводных сообществ. Когда же ледниковая эпоха заканчивается и наступает межледниковье, ситуация меняется на обратную. Ледник тает, высвобождая массы воды, и доминировать на осовобождающейся ото льда территории начинают сообщества гидроряда (тундра - это в некотором смысле чудовищно разросшееся таежное моховое болото), тундростепи же съеживаются до крохотных островков "реликтовых степей" на сухих прогреваемых южных склонах.


Тундростепь отличалась тем, что травяной ярус ее формировали в основном не мхи (как в тундре), а злаки; здесь складывался крайне криофильный вариант уже знакомого нам (по главе 13) травяного биома с его высокой биомассой пастбищных копытных и хищников - мамонтовой фауной. В ее составе были причудливо смешаны виды, приуроченные ныне к тундре (северный олень, овцебык, леминги), к степям (сайгак, лошадь, верблюд, бизон, суслики), а также виды, характерные лишь для этого сообщества и исчезнувшие вместе с ним (мамонт, шерстистый носорог, саблезубый тигр - смилодон, гигантская гиена - рисунок 60). Исчезновение мамонтовой фауны, произошедшее в начале голоцена, одни исследователи связывают с климатическими изменениями, другие же считают этих животных жертвами человека ("охотников на мамонтов"). Сторонники гипотезы "антропогенного вымирания" резонно указывают, что все предыдущие межледниковья, когда еще не было человека, криофильная мамонтовая фауна пережила вполне спокойно. Сторонники гипотезы "климатических воздействий" - опять-таки резонно - возражают, что голоценовое вымирание было наиболее масштабным не в относительно густо заселенной Евразии, а в практически безлюдной в те времена Северной Америке (человек проник сюда лишь около 10-12 тысяч лет назад из Азии через Берингов пролив); на прародине же человечества - в африканских саваннах - никаких вымираний вообще не было. Кроме того, вымирание захватило не только крупных травоядных и хищников, но и целую кучу маммальной мелочи, которая никак не могла быть для кроманьонцев ни добычей, ни врагами, подлежащими целенаправленному уничтожению.
Представляется, что наиболее близок к истине В.В. Жерихин (1993): "Каждый тип травяного биома производен от вполне определенной сукцессионной системы с лесным климаксом [в случае тундростепи - от тайги: К.Е.]. При вторичном сильном сокращении площади травяных сообществ они могут полностью утратить комплекс [поддерживающих их] крупных травоядных, а тем самым и эндогенную стабильность. В этом случае они могут вновь приобрести статус сериальных. Ярким примером могут служить современные реликтовые тундростепи, сохранившиеся в таежных сукцессионных системах после полного исчезновения тундростепного биома." В момент таяния ледника и резкого увлажнения климата расширяются моховые тундры и сокращаются злаковые тундростепи, служащие пастбищем для мамонтовой фауны. Дополнительные неприятности для популяций этих животных создает то, что тундростепной ландшафт оказывается "нарезанным" на "острова": и из теоретической экологии, и из современной практики заповедного дела известно, что для крупных животных несколько мелких резерватов хуже одного крупного (равного им по площади). Вот в этих-то, кризисных, условиях человек мог нанести мамонтовой фауне последний удар: выборочно уничтожая крупных копытных, он значительно ускорил превращение тундростепей в лесные сообщества - а дальше процесс этот пошел неостановимо, с положительной обратной связью, пока не исчез весь этот фаунистический комплекс (хотя часть его сохраняется ныне в фауне тундр и степей). Отметим, что дольше всего мамонт выжил на острове Врангеля (открытый недавно карликовый подвид, около 1,5 м в холке, вымер 5 тыс. лет назад - против 10-12 тыс. лет на континенте), где и поныне широко распространены реликтовые степи.
Самое же интересное - что итоговое воздействие катастрофических (по любым меркам) плейстоценовых оледенений на биоту Северного полушария оказалось совершенно ничтожным. Да, вымерло некоторое количество млекопитающих из мамонтовой фауны, но во-первых темпы этого вымирания не превышают средних по кайнозою, а во-вторых, как мы теперь знаем, мамонтовая фауна вымерла скорее в результате прекращения оледенения. Известен лишь один вымерший вид четвертичных насекомых (если не считать гигантского кожного овода, паразитировавший на мамонте, и нескольких видов североамериканских жуков-навозников - те исчезли вместе со своими хозяевами и прокормителями); что же касается растений, то они, похоже, не пострадали вовсе. Создается отчетливое впечатление, что в плейстоцене менялось лишь географическое распространение экосистем (широколиственные леса временно отступали к югу, а на севере изменялось соотношение площадей, занятых сообществами гидро- и ксеросериального ряда) и отдельных видов (в перигляциальных сообществах Европы появлялись жуки, ограниченные ныне степями Якутии и Тибетом) [81]. Все это лишний раз свидетельствует о том, что экосистемы в норме обладают колоссальной устойчивостью, и разрушить их внешними воздействиями - даже катастрофическими - практически невозможно. Особенно замечательно плейстоценовая ситуация смотрится на фоне "тихих" внутрисистемных кризисов вроде среднемеловой ангиоспермизации - заведомо не связанной ни с какими импактами и драматическими перестройками климата, но вызвавшей обвальные вымирания в наземных и пресноводных сообществах.


С другой стороны, влияние плейстоценовых оледенений на климат планеты отнюдь не ограничивалось высокими ее широтами. Разрастание ледниковых щитов близ полюса тут же аукалось на экваторе невиданным иссушением тропического пояса: установлено, что дождевые тропические леса Южной Америки периодически съеживались до нескольких десятков крохотных пятачков-"резерватов" в среднем течении Амазонки, а всю эту территорию занимали сухие саванны. Более того: есть серьезные основания полагать, что пустыни наиболее распространенного ныне на Земле средиземноморского типа [82] возникли лишь в плейстоцене. Если пустыни берегового и центральноазиатского типа, грубо говоря, являются пустынями всегда, то средиземноморские пустыни становятся таковыми временно, в зависимости от глобальной климатической обстановки, т.е. от взаимодействий в системе "оледенение - атмосфера - океан". Например, иссушение Сахары (наступление песков на саванну) идет буквально на наших глазах: первые европейские путешественники застали озеро Чад настоящим внутренним морем, а в реках нагорья Тибести, что в самом центре Сахары, еще в 20-е годы нашего века жили крокодилы.
Многие из этих климатических изменений повторялись "в миниатюре" на памяти человечества. На рисунке 61 представлена кривая зимних температур в Европе за последнее тысячелетие. Во время так называемого "Малого ледникового периода" (1450-1850 гг) ледники повсеместно наступали, и их размеры превосходили современные (снежный покров появлялся, например, в горах Эфиопии, где его ныне не бывает). Во время же предшествовавшего тому Атлантического оптимума (900-1300 гг) ледники сократились, и климат был заметно мягче нынешнего (вспомните: именно в эти времена викинги назвали Гренландию "Зеленой страной"); следствием потепления в высоких широтах стало увеличение количества осадков, выпадающих в аридном поясе.
Итак, на Севере стало тепло и, как писано в одном хорошем романе о викингах, "наступили времена изобилия и достатка, когда собирался такой прекрасный урожай ржи, а улов сельди был настолько велик, что большинство людей легко могли прокормить себя [что в Средневековье случалось нечасто - К.Е.]". Итог этого "изобилия и достатка" - норманская экспансия в Европе: "датская дань" [83] в Англии, варяжские дружины при всех состоятельных государях, колонизация Исландии и Гренландии, плавания в Америку. То же самое - на Юге, где стало влажно, пустыня обратилась в степь, и такое же "изобилие и достаток" посетило кочевые скотоводческие народы Центральной Азии; итог - "Монгольское нашествие" от Китая до Адриатики. На это же время приходится и расцвет городских цивилизаций в африканских саваннах - Канем, Гао, Гана, Мали, Ифе... О климатических воздействиях на судьбы человеческих цивилизаций можно говорить много, однако тут я уже явно начинаю отбивать хлеб у историков; как раз в такие моменты Шахерезада "прекращала дозволенные ей речи" - и была совершенно права.
14-а (дополнительная). Историческая биогеография. Викариантная модель и концепция "оттесненных реликтов". Фитоспрединг.
Биогеография - наука о закономерностях географического распространения живых существ. Вполне очевидно, что всякое живое существо экологически связано с определенным типом ландшафта, а если смотреть шире - с одной из природных (ландшафтно-климатических) зон: белый медведь - с арктическими льдами, лось - с тайгой, верблюд - с пустыней. С другой стороны, ареал (область распространения) некоей группы организмов в той или иной степени отражает и историю его формирования: район происхождения, время расселения, действие преград (неполнозубые, широконосые обезьяны и кавиморфные грызуны ограничены Южной Америкой, что отражает долгую изоляцию этого континента, нарушенную лишь недавно возникновением Панамского перешейка). В соответствии с этими двумя аспектами биогеографию подразделяют на ландшафтную (которая является фактически разделом экологии) и историческую. Например, верблюды распространены ныне в пустынях Азии - Центральной (двугорбый бактриан) и Передней (одногорбый дромадер); так вот, ландшафтная биогеография призвана ответить на вопрос о том, почему верблюды живут в зоне пустынь (а не в субтропических лесах или, скажем, в тайге), а историческая - почему верблюды распространены лишь в Азии и отсутствуют в Австралии и Северной Америке (где есть вполне вроде бы подходящие для них пустыни).
Возможных вариантов тут два: то ли верблюды этих континентов по каким-то причинам не достигли, то ли они здесь раньше жили, но вымерли. Но можно ли прийти к определенным историческим выводам, исходя лишь из особенностей их современного распространения? Оказывается, можно. Ближайшие родственники верблюдов - ламы - распространены в Южной Америке, так что каким бы путем ни расселялись мозоленогие (хоть из Азии в Южную Америку, хоть наоборот - из Южной Америки в Азию), миновать Северную Америку они никак не могли. Соответственно, на этом материке мозоленогие наверняка жили, но вымерли, а вот Австралии этот подотряд, видимо, не достиг - так же, как все прочие плацентарные млекопитающие (кроме летучих мышей). Ископаемые находки подтверждают эту реконструкцию (верблюды произошли в Северной Америке и исчезли там совсем недавно), однако так бывает далеко не всегда.


Давайте попытаемся реконструировать историю сумчатых, исходя лишь из их современного распространения - Австралия и Южная Америка (опоссум проник в Северную Америку из Южной недавно, по панамскому мосту). В прежние годы, когда положение материков принималось неизменным, приходилось предполагать, что сумчатые возникли в Северном полушарии, затем проникли в Австралию (из Азии) и Южную Америку (из Северной), после чего вымерли на северных материках. По нынешним временам же логично предположить, что группа эта никогда не проникала на территорию Арктогеи (ну, кроме опоссума), будучи на протяжении всей своей истории изолированной на южных материках - так же, как, например, "южноамериканские копытные". Она возникла в конце мела, когда фрагмент Гондваны, объединявший Южную Америку, Австралию и Антарктиду, был уже изолирован от остального мира, и расселилась по нему до эоцена, когда от него отделилась Австралия. Ископаемые находки, однако, рисуют иную картину. Сумчатые действительно появились в Южной Америке в позднем мелу, а потом через Антарктиду проникли в Австралию; родиной их, однако, является Северная Америка, откуда они - через Гренландию - заселили также Европу, где дожили до неогена, так и не проникнув ни в Азию, ни в Африку (рисунок 62).
Рассмотренная ситуация наглядно демонстрирует два момента. Во-первых, насколько опасно в историко-биогеографических реконструкциях опираться лишь на современное распространение группы (что делается биогеографами сплошь и рядом). Во-вторых, насколько эти реконструкции зависят от концепций, господствующих в геологии - о корректности каковых концепций биогеографы (естественно!) профессионально судить не могут и вынуждены многое принимать "на веру". В этом смысле весьма показательна история изучения дизъюнктивных (разорванных) трансокеанических ареалов.


Многие животные и растения распространены лишь на южных оконечностях разобщенных ныне океанами материков Южного полушария (рисунок 63). Происхождение этих дизъюнкций издавна интриговало биогеографов. В XIX веке предполагали, что эти живые существа проникали из одной части их современного ареала в другую по неким "временным сухопутным мостам" - обширным участкам суши между континентами (расположение последних считалось тогда неизменным), которые впоследствии погрузились в океан. Типичный пример такого рода реконструкций - Лемурия, гипотетическая суша в Индийском океане, "созданная" биогеографами для того, чтобы напрямую "провести" из Африки в Индию лемуров, слонов, панголинов и т.п. Надо заметить, что сторонники этого направления быстро вошли во вкус и, по едкому замечанию Ч. Дарвина, принялись печь подобные "временные мосты", как блины.
Хотя ныне эти реконструкции представляют лишь исторический интерес (они, помимо всего прочего, противоречат концепции изостазии), рациональное зерно в их "констатирующей части" определенно содержалось. Так, ботаник Дж. Гукер (1860) на огромном материале продемонстрировал высокое единство биоты материков Южного полушария (вспомним нотофагусовые леса на юге Австралии, в Новой Зеландии и в Чили). Последователи Гукера предполагали автохтонное (на месте своего нынешнего распространения) развитие биоты Южных континентов - изолированных от Северных и соединенных между собою некими сухопутными связями; предполагалось, что одним из основных источников формирования этой биоты могла служить Антарктида - еще не покрытая тогда ледником и имевшая существенно больший размер, чем ныне. Итак, в рамках этой концепции основное внимание уделялось единству Южной биоты и обеспечивающим ее механизмам расселения.
Иной взгляд на природу южнополушарных дизъюнкций высказывал зоолог А. Уоллес (1876). Он полагал, что основные формообразовательные процессы идут на блоке Северных континентов, откуда более молодые и продвинутые формы животных и растений оттесняют более древних и архаичных все дальше к югу. Южные оконечности материков Южного полушария являются, таким образом, "последней линией обороны" этих реликтовых (сохранившихся от более древних эпох) групп, которые в прежние времена имели гораздо более широкое, обычно панконтинентальное, распространение. С этой точки зрения нет принципиальной разницы между трансокеаническими дизъюнкциями и дизъюнкциями, расположенными на одном материке (например, европейско-дальневосточными, как у жерлянок): и те, и другие возникают в результате сокращения исходного ареала и вымирания "соединительных звеньев". Концепцию Уоллеса (ее позднее назвали теорией оттесненных реликтов) подтверждали ископаемые находки - мнгие "крайне-южные" ныне животные и растения (араукарии, саговники, двоякодышащие рыбы, бескилевые птицы и т.д.) действительно обитали раньше на северных континентах. Пауки-археиды (рисунок 63), например, были первоначально открыты в ископаемом состоянии - в эоценовом балтийском янтаре, - и лишь спустя несколько десятков лет в Южном полушарии были найдены их современные представители. В рамках этой концепции (в отличие от Гукеровской) акцент переносился на архаичность и реликтовый характер Южной биоты.
Модель Уоллеса, хорошо обоснованная палеонтологическими данными и не вводящая таких "избыточных сущностей" (по Оккаму), как сухопутные межматериковые соединения непонятной геологической природы, долго считалась главенствующей. Однако с тех пор, как в геологии возобладала тектоника плит, среди биогеографов возродился интерес к Гукеровской модели: ведь теперь уже не было нужды воздвигать между материками какие-то "сухопутные мосты" - достаточно сдвинуть между собою сами материки. Эта модель позволяет рассматривать разнообразные южнополушарные дизьюнкции как прямой результат раскола Гондваны и сохранения на ее разошедшихся в результате континентального дрейфа фрагментах представителей некогда единой биоты этого мезозойского праматерика (рисунок 63, б). Гукеровские построения считают одним из основных источников наиболее популярной ныне биогеографической концепции - викариантной биогеографии: ее задача состоит в том, чтобы согласовать последовательность ветвления филогенетического древа таксона с рисуемой геофизиками последовательностью расхождения фрагментов Пангеи.


Один из основоположников этого направления, энтомолог Л. Брундин (1966), изучал комаров-звонцов (Chironomidae) Южного полушария. Он показал, что они резко отличны от всех северополушарных (что отражает давнюю их изоляцию на территории Гондваны); среди южных хирономид наиболее архаичные, уклоняющиеся, формы обитают в Южной Африке, а наиболее близки между собой обитатели Австралии и Южной Америки. Эта последовательность родственных связей вполне соответствует порядку, в котором расходились фрагменты Пангеи: раньше всего произошел раскол на Лавразию и Гондвану (триас), внутри Гондваны же последовательно теряли связь друг с другом (через Антарктиду) Южная Африка (юра), Новая Зеландия (мел), и, наконец, Австралия и Южная Америка (эоцен и олигоцен) (рисунок 64). Позже такие последовательности были построены для множества южнополушарных ("гондванских") групп, главным образом для насекомых и иных наземных и пресноводных беспозвоночных.
Однако веские подтверждения получила в последнее время и уоллесова теория "оттесненных реликтов". По мере изученния мезозойских и палеогеновых насекомых стало ясно, что многие, если не большинство, из "крайне-южных" групп, которыми оперируют сторонники викариантной биогеографии (в том числе - те хирономиды, с которыми имел дело Брундин), в действительности были ранее широко распространены в Северном полушарии. Если искать современные аналоги той энтомофауне, что содержится в верхнемеловых янтарях Сибири и Канады, то на память приходит Новая Зеландия. Накапливается все больше аргументов в пользу того, что экзотическая биота, которая занимает ныне изолированные участки на крайнем юге Южных континентов, в мезозое имела почти всесветное распространение. Сторонники теории "оттесненных реликтов" не отрицают того, что некоторые из южнополушарных ареалов могли возникнуть в результате раскола Гондваны и расхождения ее фрагментов; они лишь подчеркивают, что распознать такие случаи среди дизъюнкций, достоверно возникших в результате вымирания "связующих звеньев" на Северных материках, в принципе невозможно.
Модели Уоллеса и Гукера, возникнув из в общем-то частной проблемы - происхождения биоты Южных материков, и акцентируя внимание в первом случае на ее архаичности и реликтовости, а во втором - на ее единстве (и обеспечивающих это единство механизмах), позже трансформировались в две альтернативные научные традиции (нечто вроде "линии Платона" и "линии Демокрита" в античной философии, приведших позднее к идеализму и материализму). К этим двум линиям в принципе может быть сведено все многообразие концепций и моделей, существующих в исторической биогеографии. Однако здесь (как и в иных случаях длительного сосуществования научных концепций) возникает впечатление, что "линия Уоллеса" и "линия Гукера" не взаимоисключающи, а взаимодополнительны: они просто рассматривают предмет исследования (ареал таксона) с разных сторон, лишь в паре дают о нем адекватное представление. В гукеровской модели таксон принимается как неизменная данность, а предметом анализа становится его расселение (преграды и их преодоление); в уоллесовской же модели исследуют таксонообразование и вымирание, полагая расселительный процесс относительно малосущественной деталью. Можно сказать, что уоллесовская модель пытается спроецировать время в пространство, а гукеровская - пространство во время.
В своей исходной версии уоллесовская модель предполагала, что основной центр формообразования находится на блоке Северных континентов, откуда всяческая архаика вытесняется на юг. Позже, однако, существование по всей планете единого, если так можно сказать, "градиента архаичности" от Югу к Севера было отвергнуто; в частности, было установлено, что представления о глубокой древности и консервативности тропической биоты не соответствуют действительности (см. главу 13). На самом деле реликты концентрируются во внетропических областях (главным образом - в субтропиках) обоих полушарий, хотя в Южном, по ряду причин, сильнее, чем в Северном.


Реликтовый ареал таксона, распространенного во внетропических областях обоих полушарий, называют биполярным или амфитропическим. Ареал этот может в дальнейшем подвергаться различным модификациям. Упомянем в этой связи предложенную К.Ю. Еськовым (1984) модель "циркумпацифического домино", основанную на распространении современных и вымерших беспозвоночных и растений в Тихоокеанском регионе. Она предстваляет собой нечто вроде "периодической системы" транспацифических дизьюнкций: все их варианты рассматриваются как последовательные стадии сокращения единого биполярного ареала (рисунок 65). Редукция северной его "дольки" (рисунок 65, 6) и породит тот самый "гондванский ареал", которым оперирует викариантная биогеография. Обратная ситуация (редукция южной "дольки" - рисунок 65, 2) наблюдается заметно реже, однако существует и целый ряд таксонов, вымерших в Южном полушарии и сохранившихся в Северном (таковы, например, хвостатые амфибии и насекомые из отрядов верблюдок и тараканосверчков). Некоторые авторы связывают эту асимметрию просто с худшей палеонтологической изученностью Южных материков; и действительно, за последние годы, после открытия крупных местонахождений мезозойских насекомых в Австралии и Бразилии, число случаев документированного вымирания в Гондване "лавразийских" ныне таксонов возросло вдвое!
Итак, ключевой проблемой для уоллесовской схемы оказывается механизм образования такого исходного ареала, из которого можно вывести все остальные: биполярного, биполярной пары "сестринских" таксонов (таковы, например, буки и нотофагусы), или же такого типа распространения, когда более продвинутые субтаксоны приурочены к тропикам, а более архаичные - к внетропическим областям. Необходимое для этого вымирание таксона на территории тропиков - с замещением его более продвинутыми формами или без такового - находит объяснение в двух альтернативных моделях: "экваториальной помпы" и "зональной стратификации".
"Экваториальная помпа" (термин принадлежит Ф. Дарлингтону) предполагает, что именно в тропических экосистемах с их стабильностью среды и высоким разнообразием идет постоянное и наиболее активное формообразование. При этом реликты "выдавливаются" (помпа!) и на север, и на юг, за счет конкуренции со стороны более молодых, продвинутых таксонов. Наиболее завершенный вид эта модель приобрела в работе С.В. Мейена (1987), основанной на палеоботаническом материале. Он показал, что в течение палеозоя почти все надродовые таксоны высших растений появлялись в экваториальном поясе в более древних стратиграфических слоях, чем за его пределами, и, следовательно, имеют экваториальное происхождение (так, доминирующие в Гондване и Ангариде глоссоптериевые и кордаиты первоначально возникли в тропиках Еврамерии - см. главу 9).


Именно тропический пояс является главной ареной макроэволюционных событий. Отсюда сформировавшиеся таксоны при потеплениях "растекаются" во внеэкваториальные широты (Мейен назвал это "фитоспредингом" - по аналогии со спредингом океанического дна), где при последующих похолоданиях они либо вымирают, либо эволюционируют в более узких (обычно внутриродовых) таксономических рамках; для внетропических областей на протяжении всей истории характерно длительное переживание архаических форм ("внетропическое персистирование"). При этом процесс этот строго однонаправленный: вселения бореальных групп в тропики при похолоданиях не происходит никогда (рисунок 66). Причину повышенной интенсивности макроэволюции в тропиках Мейен видел в том, что здесь очень сильна биотическая конкуренция, но зато ослаблена неизбирательная абиотическая компонента отбора (холод, засухи, и т.д.). В результате естественный отбор менее жестко, чем в иных местах, выбраковывает крупные морфологические новации, давая шанс "перспективным монстрам" (термин Р. Гольдшмидта, 1940).
Альтернативный взгляд на природу амфитропических ареалов высказывал В.В. Жерихин (1978). Он основан на том, что в мезозое и раннем палеогене климатическая зональность в ее современном виде отсутствовала, и климат практически по всей планете был близок к нынешнему субтропическому. В конце палеогена произошла климатическая перестройка, в результате которой тепло стало распределяться по поверхности планеты менее равномерно, и на полюсах стало заметно холоднее, чем прежде, а на экваторе - жарче. В итоге единую "теплоумеренно-субтропическую" биоту Земли охватил процесс "зональной стратификации"; он заключался в том, что в экваториальных и приполярных широтах (где сменился климат) начались экосистемные перестройки, приведшие к достаточно массовому вымиранию мезозойских и раннепалеогеновых групп. Эти группы имели наилучшие шансы выжить в двух амфитропических "кольцах" с субтропическим и теплоумеренным климатом, господствовавшим ранее по всей планете - где они и поныне существуют в статусе реликтов (см. также главу 13).
Сравнение моделей "экваториальной помпы" и "зональной стратификации" позволяет прийти к достаточно неожиданному выводу о том, что они в действительности не альтернативны, а взаимодополнительны. Более того, К.Ю. Еськовым (1994) была предложена и обобщающая их концепция. Она состоит в том, что единый механизм мейеновского "фитоспрединга" может работать в различных режимах, диктуемых внешними (макроклиматическими) условиями, и "экваториальная помпа" есть просто один из этих рабочих режимов. Фитоспрединг понимается здесь как локализация макроэволюционных процессов (ведущих к возникновению новых таксонов) в тех районах Земли, где климатические условия наиболее благоприятны, и, соответственно, абиотическая компонента естественного отбора наиболее ослаблена; отсюда затем происходит однонаправленное "растекание" таксонов в районы с более жесткой абиотикой, где эти группы могут выживать и после своего вымирания в исходных районах. Фитоспрединг, таким образом, должен порождать целый ряд "градиентов архаичности": гумидно-аридный, равнинно-высокогорный, океаническо-континентальный и т.д. Однако в эпохи резко выраженной широтной зональности климата (т.е. в криоэры) на всех них накладывается мощнейший температурный экваториально-полярный градиент, который низводит их до "градиентов второго порядка" и затушевывает их существование.
Именно в эти периоды фитоспрединг и работает в режиме "экваториальной помпы". В эпохи же с ослабленной широтной зональностью (термоэры) центры формообразования не локализованы в экваториальной зоне, а более диффузно распределены по всей планете. Число нарушений установленной Мейеном закономерности в стратиграфическом распределении членов таксона (в низких широтах они появляются в более древних слоях, чем в высоких) должно заметно возрастать в азональные эпохи - и анализ распределения позднепалеозойских и мезозойских групп насекомых подтвердил, что в целом это действительно так. Процесс же перехода биоты Земли от "полиградиентного" состояния (азональные эпохи) к "моноградиентному" (зональные эпохи) происходит в соответствии с моделью "зональной стратификации". Итак, фитоспрединг - это универсальный механизм флоро- и фауногенеза; он имеет три режима работы, определяемых глобальным термическим градиентом, и режимы эти формируют замкнутый трехчленный цикл: "экваториальная помпа" (поздний палеозой, криоэра) - "диффузные центры формообразования" (мезозой-ранний палеоген, термоэра) - "зональная стратификация" (поздний палеоген) - снова "экваториальная помпа" (неоген, криоэра), и т.д.



Рекомендуемая литература
Художественная
А. Конан-Дойл "Затерянный мир"
В.А.Обручев "Плутония"; "Земля Санникова"
Ж. Рони Старший "Борьба за огонь"; "Пещерный лев"
М. Крайтон "Парк юрского периода"
Научно-популярная
А. Азимов .....................
С. Уэда "Новый взгляд на Землю"
А.С. Монин "Популярная история Земли"
Дж. Имбри, К.П. Имбри "Тайны ледниковых эпох"
Юл. Медведев "Судеб посланник" (в книге "Бросая вызов")
И.А. Ефремов "Дорога ветров"
Дж. Смит "Старина четвероног"
А.К. Рождественский "На поиски динозавров в Гоби"
И. Аугуста, З. Буриан "По путям развития жизни"; "Летающие ящеры и древние птицы"; "Ящеры древних морей"; "Гиганты суши"; "Книга о мамонтах"; "Жизнь древнего человека"
К.Л. Фентон, М.А. Фентон "Каменная книга. Летопись доисторической жизни"
Ю.А. Орлов "О мире древних животных"
Д. Эттенборо "Жизнь на Земле"
И. Яковлева, В. Яковлев "По следам минувшего"
М.Ф. Ивахненко, В.А. Корабельников "Живое прошлое Земли"
А. Гангнус "Через горы времени"
Г.А. Заварзин "Бактерии и состав атмосферы Земли"
И.Н. Крылов "На заре жизни"
А.Ю. Розанов "Что произошло 600 миллионов лет назад"
С.В. Мейен "Из истории растительных династий"; "Следы трав индейских"
Н. Эйдельман "Ищу предка"
Р. Фоули "Еще один великолепный вид"
В.А. Красилов "Нерешенные вопросы теории эволюции"
Научная и учебная
А.С. Монин, ...... Шишков "История климата"
Р. Кэрролл "Палеонтология и эволюция позвоночных" (3 тома)
В.В. Друщиц "Палеонтология беспозвоночных"
С.В. Мейен "Основы палеоботаники"; "Историческое развитие класса насекомых", Труды ПИН АН СССР, т.175
В.В. Жерихин "Развитие и смена меловых и кайнозойских фаунистических комплексов" (Общая часть)
Ф. Дарлингтон "Зоогеография"
Дж. Симпсон "Великолепная изоляция"
С.М. Разумовский "Закономерности динамики фитоценозов"
О.Г. Кусакин, А.Л. Дроздов "Филема органического мира"
В.А. Красилов "Происхождение и ранняя эволюция цветковых растений"; "Эволюция и биостратиграфия"
Л.П. Татаринов "Очерки по теории эволюции"
Т. де Шарден "Феномен человека"
Э. Шредингер "Что такое жизнь с точки зрения физика"
И. Пригожин, И. Стенгерс "Порядок из хаоса"





Словарь терминов
автотрофы - организмы, способные самостоятельно синтезировать органические вещества из неорганических, используя энергию солнца (фототрофы - см.) или окислительно-восстановительных химических реакций (хемотрофы - см.).
адаптация - приспособление строения и функций организмов к условиям их существования.
адекватный - вполне соответствующий.
амфибиотический - связанный с жизнью как в воде, так и на суше.
аналогия - сходство в каком-либо отношении между предметами, явлениями или понятиями.
анаэробы - организмы, живущие в анаэробных условиях: при отсутствии свободного кислорода. Аэробами являются часть микроорганизмов.
анемофилия - приспособленность цветков растений к опылению при помощи ветра.
антициклон - крупномасштабная область высокого атмосферного давления с циркуляцией воздуха по часовой стрелке в северном полушарии и и против часовой стрелки - в южном, со слабыми ветрами и малооблачной погодой.
антофилия - приспособленность различных животных к связям с цветками. 
аспект - точка зрения, с которой рассматривается предмет, явление или понятие.
аридный климат - климат, характеризующийся преобладанием испарения над атмосферными осадками, что создает дефицит влаги.
архаичность - черты, свидетельствующие о древности организма или биоты.
аэробы - организмы, живущие в аэробных условиях: при наличии свободного кислорода. Аэробами являются животные, растения и часть микроорганизмов.
бентос - совокупность живых организмов, обитающих на дне водоемов (на грунте и в грунте).
биогены (биогенные элементы) - химические элементы, непременно входящие в состав живых организмов (углерод, кислород, азот, сера и т.д.).
биосфера - область распространения жизни на Земле; состав, структура и энергетика биосферы определяется главным образом прошлой и/или современной деятельностью живых организмов.
биота - исторически сложившаяся совокупность живых организмов, объединенных общей областью распространения и временем существования.
брожение - процесс ферментативного неполного окисления углеводов, происходящий без участия свободного кислорода; конечным продуктом брожения могут быть спирт или органические кислоты (молочная, уксусная). Составляет основу обмена веществ многих бактерий.
буферные растворы - водные растворы слабой кислоты и ее соли или слабого основания и его соли; обладают способностью сохранять определенный уровень кислотности (концентрации водородных ионов) при добавлении небольших количеств сильной кислоты или щелочи. Пример буферного раствора - существующий в морской воде карбонатно-бикарбонатный буфер (угольная кислота с углекислый кальцием).
восстановительная атмосфера - атмосфера, в составе которой отсутствуют газы-окислители: молекулярный кислород, галогены и т.п.
геохимический цикл - путь миграции атомов некоего химического элемента в оболочках Земли (атмосфере, гидросфере, литосфере и биосфере) в ходе природных (в том числе - биологических) процессов.
гетеротрофы - организмы, неспособные самостоятельно синтезировать органические вещества из неорганических и использующие органику, созданную другими живыми существами. Животные, грибы и часть бактерий.
гипертонический раствор - раствор, осмотическое давление (см.) которого выше осмотического давления внутриклеточного содержимого.
гипотеза - научное предположение, выдвигаемое для объяснения какого-либо явления и требующее проверки на опыте и/или теоретического обоснования для того, чтобы стать достоверной научной теорией (см.).
гипотонический раствор - раствор, осмотическое давление (см.) которого ниже осмотического давления внутриклеточного содержимого.
гликолиз - анаэробное расщепление углеводов в животном организме с образованием молочной кислоты.
гомункулус - по представлениям средневековых алхимиков - существо, подобное человеку, которое можно получить искусственно, "в колбе".
градиент - мера возрастания или убывания в пространстве какой-либо физической величины на единицу расстояния.
гумус - органический компонент почвы, образующийся в результате биохимических превращений растительных и животных остатков.
гумидный климат - климат, характеризующийся преобладанием атмосферных осадков в виде воды над испарением, что ведет к избыточному увлажнению.
давление света - давление, производимое светом на тела, отражающие или поглощающие свет. Сила давления света на малые частицы в космических процессах того же порядка, что и сила тяжести.
дегазация магмы - удаление из расплавленной магмы растворенных в ней газов, происходящее как в канале вулкана, так и на поверхности Земли.
детерминизм - философская концепция, признающая объективную закономерность и причинную обусловленность всех явлений природы и общества.
детритная цепь - трофическая цепь (см.), которая начинается от мертвого органического вещества, идет к микроорганизмам, которые им питаются, а затем к детритофагам (см.) и их хищникам.

<< Пред. стр.

стр. 2
(общее количество: 4)

ОГЛАВЛЕНИЕ

След. стр. >>