стр. 1
(общее количество: 9)

ОГЛАВЛЕНИЕ

След. стр. >>

В.И. ЗАВГОРОДНИЙ

КОМПЛЕКСНАЯ
ЗАЩИТА ИНФОРМАЦИИ
В КОМПЬЮТЕРНЫХ СИСТЕМАХ

Рекомендовано Учебно-методическим объединением по образованию в области статистики, прикладной информатики и математических методов в экономике в качестве учебного пособия для студентов высших учебных заведений


Москва • «Логос» • 2001

УДК 681.322.067
ББК 32.973-018.2
З-13
Рецензенты:
кафедра вычислительной техники Финансовой академии при Правительстве Российской Федерации (зав.каф. - канд. техн. Наук проф. В.П. Косарев); доктор техн. наук. проф. А.П. Пятибратов (Московский экономико-статистический институт)

Завгородний В.И.
З-13 Комплексная защита информации в компьютерных системах: Учебное пособие. - М.: Логос; ПБОЮЛ Н.А. Егоров, 2001. - 264 с.: ил.
ISBN 5-94010-088-0

Освещаются вопросы защиты информации в компьютерных системах. Анализируются и классифицируются возможные угрозы безопасности информации, рассматриваются методы и средства защиты от незаконного проникновения в вычислительные сети, раскрываются подходы к построению и эксплуатации комплексных систем защиты.
Для студентов высших учебных заведений, специалистов в области информационных технологий и защиты информации, широкого круга пользователей компьютерных систем.
ББК 32.973-018.2
ISBN 5-94010-088-0

© Завгородний В.И., 2001
© ПБОЮЛ Н.А.Егоров,2001
© «Логос», 2001
ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ 5
I. ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ ЗАЩИТЫ ИНФОРМАЦИИ В КОМПЬЮТЕРНЫХ СИСТЕМАХ 7
ГЛАВА 1. Предмет и объект защиты 7
1.1. Предмет защиты 7
1.2. Объект защиты информации 11
ГЛАВА 2.Угрозы безопасности информации в компьютерных системах 13
2.1. Случайные угрозы 14
2.2. Преднамеренные угрозы 15
II. МЕТОДЫ И СРЕДСТВА ЗАЩИТЫ ИНФОРМАЦИИ
В КОМПЬЮТЕРНЫХ СИСТЕМАХ 23
ГЛАВА 3. Правовые и организационные методы защиты информации
в КС 23
3.1. Правовое регулирование в области безопасности информации 23
3.2. Общая характеристика организационных методов защиты информации
в КС 28
ГЛАВА 4. Защита информации в КС от случайных угроз 29
4.1. Дублирование 29
4.2. Повышение надежности КС 34
4.3. Создание отказоустойчивых КС 35
4.4. Блокировка ошибочных операций 37
4.5. Оптимизация взаимодействия пользователей и обслуживающего персонала с КС 38
4.6. Минимизация ущерба от аварий и стихийных бедствий 40
ГЛАВА 5. Методы и средства защиты информации в КС
от традиционного шпионажа и диверсий 41
5.1. Система охраны объекта КС 41
5.2. Организация работ с конфиденциальными информационными ресурсами на объектах КС 55
5.3. Противодействие наблюдению в оптическом диапазоне 55
5.4. Противодействие подслушиванию 56
5.5. Средства борьбы с закладными подслушивающими устройствами 60
5.6. Защита от злоумышленных действий обслуживающего персонала
и пользователей 63
ГЛАВА 6. Методы и средства защиты от электромагнитных излучений
и наводок 64
6.1. Пассивные методы защиты от побочных электромагнитных излучений
и наводок 64
6.2. Активные методы защиты от ПЭМИН 68
ГЛАВА 7. Методы защиты от несанкционированного изменения структур КС 69
7.1. Общие требования к защищенности КС от несанкционированного изменения структур 69
7.2. Защита от закладок при разработке программ 72
7.3. Защита от внедрения аппаратных закладок на этапе разработки и производства 76
7.4. Защита от несанкционированного изменения структур КС в процессе эксплуатации 77
ГЛАВА 8. Защита информации в КС от несанкционированного доступа 86
8.1. Система разграничения доступа к информации в КС 87
8.2. Система защиты программных средств от копирования
и исследования 95
ГЛАВА 9. Криптографические методы защиты информации 101
9.1. Классификация методов криптографического преобразования информации 101
9.2. Шифрование. Основные понятия 103
9.3. Методы шифрования с симметричным ключом 105
9.4. Системы шифрования с открытым ключом 114
9.5. Стандарты шифрования 117
9.6. Перспективы использования криптозащиты информации в КС 119
ГЛАВА 10. Компьютерные вирусы и механизмы борьбы с ними 120
10.1. Классификация компьютерных вирусов 120
10.2. Файловые вирусы 124
10.3. Загрузочные вирусы 127
10.4. Вирусы и операционные системы 128
10.5. Методы и средства борьбы с вирусами 129
10.6. Профилактика заражения вирусами компьютерных систем 132
10.7. Порядок действий пользователя при обнаружении заражения ЭВМ вирусами 134
ГЛАВА 11. Защита информации в распределенных КС 135
11.1. Архитектура распределенных КС 135
11.2. Особенности защиты информации в РКС 137
11.3. Обеспечение безопасности информации в пользовательской подсистеме и специализированных коммуникационных КС 139
11.4. Защита информации на уровне подсистемы управления РКС 140
11.5. Защита информации в каналах связи 142
11.6. Подтверждение подлинности информации, получаемой
по коммуникационной подсети 152
11.7. Особенности защиты информации в базах данных 154
III. ПОСТРОЕНИЕ И ОРГАНИЗАЦИЯ ФУНКЦИОНИРОВАНИЯ КОМПЛЕКСНЫХ СИСТЕМ ЗАЩИТЫ ИНФОРМАЦИИ
В КОМПЬЮТЕРНЫХ СИСТЕМАХ 159
ГЛАВА 12. Построение комплексных систем защиты информации 159
12.1. Концепция создания защищенных КС 159
12.2. Этапы создания комплексной системы защиты информации 162
12.3. Научно-исследовательская разработка КСЗИ 162
12.4. Моделирование КСЗИ 165
12.5. Выбор показателей эффективности и критериев оптимальности
КСЗИ 171
12.6. Математическая постановка задачи разработки комплексной
системы защиты информации 173
12.7. Подходы к оценке эффективности КСЗИ 174
12.8. Создание организационной структуры КСЗИ 182
ГЛАВА 13. Организация функционирования комплексных систем 185
защиты информации 185
13.1. Применение КСЗИ по назначению 185
13.2. Техническая эксплуатация КСЗИ 193
Список принятых сокращений 196
БИБЛИОГРАФИЯ 197

































ВВЕДЕНИЕ

Вступление человечества в XXI век знаменуется бурным развитием информационных технологий во всех сферах общественной жизни. Информация все в большей мере становится стратегическим ресурсом государства, производительной силой и дорогим товаром. Это не может не вызывать стремления государств, организаций и отдельных граждан получить преимущества за счет овладения информацией, недоступной оппонентам, а также за счет нанесения ущерба информационным ресурсам противника (конкурента) и защиты своих информационных ресурсов.
Значимость обеспечения безопасности государства в информационной сфере подчеркнута в принятой в сентябре 2000 года «Доктрине информационной безопасности Российской Федерации»1 [1 Доктрина информационной безопасности Российской Федерации. Утверждена Президентом Российской Федерации 09.09.2000 г. // Российская газета, 28 сентября 2000 г.]: "Национальная безопасность Российской Федерации существенным образом зависит от обеспечения информационной безопасности, и в ходе технического прогресса эта зависимость будет возрастать".
Остроту межгосударственного информационного противоборства можно наблюдать в оборонной сфере, высшей формой которой являются информационные войны. Элементы такой войны уже имели место в локальных военных конфликтах на Ближнем Востоке и на Балканах. Так, войскам НАТО удалось вывести из строя систему противовоздушной обороны Ирака с помощью информационного оружия. Эксперты предполагают, что войска альянса использовали программную закладку, внедренную заблаговременно в принтеры, которые были закуплены Ираком у французской фирмы и использовались в АСУ ПВО.
Не менее остро стоит вопрос информационного противоборства и на уровне организаций, отдельных граждан. Об этом свидетельствуют многочисленные попытки криминальных элементов получить контроль над компьютерными технологиями для извлечения материальной выгоды. Достаточно привести в качестве примера случаи шантажа английских фирм преступной международной группой. За 1993-1996 годы преступники получили 400 миллионов фунтов стерлингов. Жертвам приходилось выплачивать до 13 миллионов фунтов стерлингов единовременно после демонстрации шантажистами своих возможностей остановить все сделки или получить доступ к новейшим разработкам фирм. Деньги переводились в банки, расположенные в оффшорных зонах, откуда преступники снимали их в считанные минуты.
Важно также обеспечить конституционные права граждан на получение достоверной информации, на ее использование в интересах осуществления законной деятельности, а также на защиту информации, обеспечивающую личную безопасность.
Противоборство государств в области информационных технологий, стремление криминальных структур противоправно использовать информационные ресурсы, необходимость обеспечения прав граждан в информационной сфере, наличие множества случайных угроз вызывают острую необходимость обеспечения защиты информации в компьютерных системах (КС), являющихся материальной основой информатизации общества.
Проблема обеспечения информационной безопасности на всех уровнях может быть решена успешно только в том случае, если создана и функционирует комплексная система защиты информации, охватывающая весь жизненный цикл компьютерных систем от разработки до утилизации и всю технологическую цепочку сбора, хранения, обработки и выдачи информации. Вопросы построения и организации функционирования такой системы защиты рассматриваются в настоящем учебном пособии. Оно позволит выработать у читателей целостный, системный взгляд на проблему защиты информации в компьютерных системах.
В первом разделе даются общие понятия, раскрываются термины теории защиты информации, приводятся правовые основы защиты информации, анализируются возможные угрозы безопасности информации в КС. В наибольшем по объему втором разделе рассматриваются средства и методы защиты информации. В заключительном третьем разделе рассматривается проблема построения и организации функционирования систем защиты информации в КС.

























I. ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ ЗАЩИТЫ ИНФОРМАЦИИ В КОМПЬЮТЕРНЫХ СИСТЕМАХ

ГЛАВА 1
Предмет и объект защиты

1.1. Предмет защиты

В Федеральном законе РФ «Об информации, информатизации и защите информации», принятом 25 января 1995года Государственной Думой [50], определено, что «информация - сведения о лицах, предметах, фактах, событиях, явлениях и процессах, независимо от формы их представления». Информация имеет ряд особенностей [48]:
* она нематериальна;
* информация хранится и передается с помощью материальных носителей;
* любой материальный объект содержит информацию о самом себе или о другом объекте.
Нематериальность информации понимается в том смысле, что нельзя измерить ее параметры известными физическими методами и приборами. Информация не имеет массы, энергии и т. п.
Информация хранится и передается на материальных носителях. Такими носителями являются мозг человека, звуковые и электромагнитные волны, бумага, машинные носители (магнитные и оптические диски, магнитные ленты и барабаны) и др.
Информации присущи следующие свойства [48].
1. Информация доступна человеку, если она содержится на материальном носителе. Поэтому необходимо защищать материальные носители информации, так как с помощью материальных средств можно защищать только материальные объекты.
2. Информация имеет ценность. Ценность информации определяется степенью ее полезности для владельца. Обладание истинной (достоверной) информацией дает ее владельцу определенные преимущества. Истинной или достоверной информацией является информация, которая с достаточной для владельца (пользователя) точностью отражает объекты и процессы окружающего мира в определенных временных и пространственных рамках.
Информация, искаженно представляющая действительность (недостоверная информация), может нанести владельцу значительный материальный и моральный ущерб. Если информация искажена умышленно, то ее называют дезинформацией.
Законом «Об информации, информатизации и защите информации» гарантируется право собственника информации на ее использование и защиту от доступа к ней других лиц (организаций). Если доступ к информации ограничивается, то такая информация является конфиденциальной. Конфиденциальная информация может содержать государственную или коммерческую тайну. Коммерческую тайну могут содержать сведения, принадлежащие частному лицу, фирме, корпорации и т. п. Государственную тайну могут содержать сведения, принадлежащие государству (государственному учреждению). В соответствии с законом «О государственной тайне» [17] сведениям, представляющим ценность для государства, может быть присвоена одна из трех возможных степеней секретности. В порядке возрастания ценности (важности) информации ей может быть присвоена степень (гриф) «секретно», «совершенно секретно» или «особой важности». В государственных учреждениях менее важной информации может присваиваться гриф «для служебного пользования».
Для обозначения ценности конфиденциальной коммерческой информации используются три категории:
* «коммерческая тайна - строго конфиденциально»;
* «коммерческая тайна - конфиденциально»;
* «коммерческая тайна».
Используется и другой подход к градации ценности коммерческой информации:
* «строго конфиденциально - строгий учет»;
* «строго конфиденциально»;
* «конфиденциально».
3. Ценность информации изменяется во времени.
Как правило, со временем ценность информации уменьшается. Зависимость ценности информации от времени приближенно определяется в соответствии с выражением:
,
где - ценность информации в момент ее возникновения (получения); t - время от момента возникновения информации до момента определения ее стоимости; - время от момента возникновения информации до момента ее устаревания.
Время, через которое информация становится устаревшей, меняется в очень широком диапазоне. Так, например, для пилотов реактивных самолетов, автогонщиков информация о положении машин в пространстве устаревает за доли секунд. В то же время информация о законах природы остается актуальной в течение многих веков.
4. Информация покупается и продается.
Ее правомочно рассматривать как товар, имеющий определенную цену. Цена, как и ценность информации, связаны с полезностью информации для конкретных людей, организаций, государств. Информация может быть ценной для ее владельца, но бесполезной для других. В этом случае информация не может быть товаром, а, следовательно, она не имеет и цены. Например, сведения о состоянии здоровья обычного гражданина являются ценной информацией для него. Но эта информация, скорее всего, не заинтересует кого-то другого, а, следовательно, не станет товаром, и не будет иметь цены.
Информация может быть получена тремя путями:
* проведением научных исследований;
* покупкой информации;
* противоправным добыванием информации.
Как любой товар, информация имеет себестоимость, которая определяется затратами на ее получение. Себестоимость зависит от выбора путей получения информации и минимизации затрат при добывании необходимых сведений выбранным путем. Информация добывается с целью получения прибыли или преимуществ перед конкурентами, противоборствующими сторонами. Для этого информация:
* продается на рынке;
* внедряется в производство для получения новых технологий и товаров, приносящих прибыль;
* используется в научных исследованиях;
* позволяет принимать оптимальные решения в управлении.
5. Сложность объективной оценки количества информации.
Существует несколько подходов к измерению количества информации.
А. Энтропийный подход.
В теории информации количество информации оценивается мерой уменьшения у получателя неопределенности (энтропии) выбора или ожидания событий после получения информации. Количество информации тем больше, чем ниже вероятность события. Энтропийный подход широко используется при определении количества информации, передаваемой по каналам связи. Выбор при приеме информации осуществляется между символами алфавита в принятом сообщении. Пусть сообщение, принятое по каналу связи, состоит из N символов (без учета связи между символами в сообщении). Тогда количество информации в сообщении может быть подсчитано по формуле Шеннона [59]:

,

где - вероятность появления в сообщении символа i; к - количество символов в алфавите языка.
Анализ формулы Шеннона показывает, что количество информации в двоичном представлении (в битах или байтах) зависит от двух величин: количества символов в сообщении и частоты появления того или иного символа в сообщениях для используемого алфавита. Этот подход абсолютно не отражает насколько полезна полученная информация, а позволяет определить лишь затраты на передачу сообщения.
Б. Тезаурусный подход.
Этот подход предложен Ю.А. Шрейдером [60]. Он основан на рассмотрении информации как знаний. Согласно этому подходу количество информации, извлекаемое человеком из сообщения, можно оценить степенью изменения его знаний. Структурированные знания, представленные в виде понятий и отношений между ними, называются тезаурусом. Структура тезауруса иерархическая. Понятия и отношения, группируясь, образуют другие, более сложные понятия и отношения.
Знания отдельного человека, организации, государства образуют соответствующие тезаурусы. Тезаурусы организационных структур образуют тезаурусы составляющих их элементов. Так тезаурус организации образуют, прежде всего, тезаурусы сотрудников, а также других носителей информации, таких как документы, оборудование, продукция и т. д.
Для передачи знаний требуется, чтобы тезаурусы передающего и принимающего элемента пересекались. В противном случае владельцы тезаурусов не поймут друг друга.
Тезаурусы человека и любых организационных структур являются их капиталом. Поэтому владельцы тезаурусов стремятся сохранить и увеличить свой тезаурус. Увеличение тезауруса осуществляется за счет обучения, покупки лицензии, приглашения квалифицированных сотрудников или хищения информации.
В обществе наблюдаются две тенденции: развитие тезаурусов отдельных элементов (людей, организованных структур) и выравнивание тезаурусов элементов общества.
Выравнивание тезаурусов происходит как в результате целенаправленной деятельности (например, обучения), так и стихийно. Стихийное выравнивание тезаурусов происходит за счет случайной передачи знаний, в том числе и незаконной передачи.
В. Практический подход.
На практике количество информации измеряют, используя понятие «объем информации». При этом количество информации может измеряться в количестве бит (байт), в количестве страниц текста, длине магнитной ленты с видео- или аудиозаписью и т.п. Однако очевидно, что на одной странице информации может содержаться больше или меньше, по крайней мере, по двум причинам. Во-первых, разные люди могут разместить на странице различное количество сведений об одном и том же объекте, процессе или явлении материального мира. Во-вторых, разные люди могут извлечь из одного и того же текста различное количество полезной, понятной для них информации. Даже один и тот же человек в разные годы жизни получает разное количество информации при чтении книги.
В результате копирования без изменения информационных параметров носителя количество информации не изменяется, а цена снижается. Примером копирования без изменения информационных параметров может служить копирование текста с использованием качественных копировальных устройств. Текст копии, при отсутствии сбоев копировального устройства, будет содержать точно такую же информацию, как и текст оригинала. Но при копировании изображений уже не удастся избежать искажений. Они могут быть только большими или меньшими.
В соответствии с законами рынка, чем больше товара появляется, тем он дешевле. Этот закон полностью справедлив и в отношении копий информации. Действие этого закона можно проследить на примере пиратского распространения программных продуктов, видеопродукции и т. п.
В качестве предмета защиты рассматривается информация, хранящаяся, обрабатываемая и передаваемая в компьютерных системах. Особенностями этой информации являются:
* двоичное представление информации внутри системы, независимо от физической сущности носителей исходной информации;
* высокая степень автоматизации обработки и передачи информации;
* концентрация большого количества информации в КС.

1.2. Объект защиты информации

Объектом защиты информации является компьютерная система или автоматизированная система обработки данных (АСОД). В работах, посвященных защите информации в автоматизированных системах, до последнего времени использовался термин АСОД, который все чаще заменяется термином КС. Что же понимается под этим термином?
Компьютерная система - это комплекс аппаратных и программных средств, предназначенных для автоматизированного сбора, хранения, обработки, передачи и получения информации. Наряду с термином «информация» применительно к КС часто используют термин «данные». Используется и другое понятие -«информационные ресурсы». В соответствии с законом РФ «Об информации, информатизации и защите информации» под информационными ресурсами понимаются отдельные документы и отдельные массивы документов в информационных системах (библиотеках, архивах, фондах, банках данных и других информационных системах).
Понятие КС очень широкое и оно охватывает следующие системы:
* ЭВМ всех классов и назначений;
* вычислительные комплексы и системы;
* вычислительные сети (локальные, региональные и глобальные).
Такой широкий диапазон систем объединяется одним понятием по двум причинам: во-первых, для всех этих систем основные проблемы защиты информации являются общими; во-вторых, более мелкие системы являются элементами более крупных систем. Если защита информации в каких-либо системах имеет свои особенности, то они рассматриваются отдельно.
Предметом защиты в КС является информация. Материальной основой существования информации в КС являются электронные и электромеханические устройства (подсистемы), а также машинные носители. С помощью устройств ввода или систем передачи данных (СПД) информация попадает в КС. В системе информация хранится в запоминающих устройствах (ЗУ) различных уровней, преобразуется (обрабатывается) процессорами (ПЦ) и выводится из системы с помощью устройств вывода или СПД. В качестве машинных носителей используются бумага, магнитные ленты, диски различных типов. Ранее в качестве машинных носителей информации использовались бумажные перфокарты и перфоленты, магнитные барабаны и карты. Большинство типов машинных носителей информации являются съемными, т.е. могут сниматься с устройств и использоваться (бумага) или храниться (ленты, диски, бумага) отдельно от устройств.
Таким образом, для защиты информации (обеспечения безопасности информации) в КС необходимо защищать устройства (подсистемы) и машинные носители от несанкционированных (неразрешенных) воздействий на них.
Однако такое рассмотрение КС с точки зрения защиты информации является неполным. Компьютерные системы относятся к классу человеко-машинных систем. Такие системы эксплуатируются специалистами (обслуживающим персоналом) в интересах пользователей. Причем, в последние годы пользователи имеют самый непосредственный доступ к системе. В некоторых КС (например, ПЭВМ) пользователи выполняют функции обслуживающего персонала. Обслуживающий персонал и пользователи являются также носителями информации. Поэтому от несанкционированных воздействий необходимо защищать не только устройства и носители, но также обслуживающий персонал и пользователей.
При решении проблемы защиты информации в КС необходимо учитывать также противоречивость человеческого фактора системы. Обслуживающий персонал и пользователи могут быть как объектом, так и источником несанкционированного воздействия на информацию.
Понятие «объект защиты» или «объект» чаще трактуется в более широком смысле. Для сосредоточенных КС или элементов распределенных систем понятие «объект» включает в себя не только информационные ресурсы, аппаратные, программные средства, обслуживающий персонал, пользователей, но и помещения, здания, и даже прилегающую к зданиям территорию.
Одними из основных понятий теории защиты информации являются понятия «безопасность информации» и «защищенные КС». Безопасность (защищенность) информации в КС - это такое состояние всех компонент компьютерной системы, при котором обеспечивается защита информации от возможных угроз на требуемом уровне. Компьютерные системы, в которых обеспечивается безопасность информации, называются защищенными.
Безопасность информации в КС (информационная безопасность) является одним из основных направлений обеспечения безопасности государства, отрасли, ведомства, государственной организации или частной фирмы.
Информационная безопасность достигается проведением руководством соответствующего уровня политики информационной безопасности. Основным документом, на основе которого проводится политика информационной безопасности, является программа информационной безопасности. Этот документ разрабатывается и принимается как официальный руководящий документ высшими органами управления государством, ведомством, организацией. В документе приводятся цели политики информационной безопасности и основные направления решения задач защиты информации в КС. В программах информационной безопасности содержатся также общие требования и принципы построения систем защиты информации в КС.
Под системой защиты информации в КС понимается единый комплекс правовых норм, организационных мер, технических, программных и криптографических средств, обеспечивающий защищенность информации в КС в соответствии с принятой политикой безопасности.

Контрольные вопросы
1. Охарактеризуйте информацию и ее свойства.
2. Что является объектом защиты информации?
3. Дайте характеристику основных понятий теории защиты информации.


ГЛАВА 2
Угрозы безопасности информации в компьютерных системах

С позиции обеспечения безопасности информации в КС такие системы целесообразно рассматривать в виде единства трех компонент, оказывающих взаимное влияние друг на друга:
* информация;
* технические и программные средства;
* обслуживающий персонал и пользователи.
В отношении приведенных компонент иногда используют и термин «информационные ресурсы», который в этом случае трактуется значительно шире, чем в Федеральном законе РФ «Об информации, информатизации и защите информации».
Целью создания любой КС является удовлетворение потребностей пользователей в своевременном получении достоверной информации и сохранении ее конфиденциальности (при необходимости). Информация является конечным «продуктом потребления» в КС и выступает в виде центральной компоненты системы. Безопасность информации на уровне КС обеспечивают две другие компоненты системы. Причем эта задача должна решаться путем защиты от внешних и внутренних неразрешенных (несанкционированных) воздействий. Особенности взаимодействия компонент заключаются в следующем. Внешние воздействия чаще всего оказывают несанкционированное влияние на информацию путем воздействия на другие компоненты системы. Следующей особенностью является возможность несанкционированных действий, вызываемых внутренними причинами, в отношении информации со стороны технических, программных средств, обслуживающего персонала и пользователей. В этом заключается основное противоречие взаимодействия этих компонент с информацией. Причем, обслуживающий персонал и пользователи могут сознательно осуществлять попытки несанкционированного воздействия на информацию. Таким образом, обеспечение безопасности информации в КС должно предусматривать защиту всех компонент от внешних и внутренних воздействий (угроз).
Под угрозой безопасности информации понимается потенциально возможное событие, процесс или явление, которые могут привести к уничтожению, утрате целостности, конфиденциальности или доступности информации.
Все множество потенциальных угроз безопасности информации в КС может быть разделено на два класса (рис 1).

2.1. Случайные угрозы

Угрозы, которые не связаны с преднамеренными действиями злоумышленников и реализуются в случайные моменты времени, называют случайными или непреднамеренными.
Реализация угроз этого класса приводит к наибольшим потерям информации (по статистическим данным - до 80% от ущерба, наносимого информационным ресурсам КС любыми угрозами). При этом могут происходить уничтожение, нарушение целостности и доступности информации. Реже нарушается конфиденциальность информации, однако при этом создаются предпосылки для злоумышленного воздействия на информацию.
Стихийные бедствия и аварии чреваты наиболее разрушительными последствиями для КС, т.к. последние подвергаются физическому разрушению, информация утрачивается или доступ к ней становится невозможен.


Рис. 1. Угрозы безопасности информации в компьютерных системах
Сбои и отказы сложных систем неизбежны. В результате сбоев и отказов нарушается работоспособность технических средств, уничтожаются и искажаются данные и программы, нарушается алгоритм работы устройств. Нарушения алгоритмов работы отдельных узлов и устройств могут также привести к нарушению конфиденциальности информации. Например, сбои и отказы средств выдачи информации могут привести к несанкционированному доступу к информации путем несанкционированной ее выдачи в канал связи, на печатающее устройство и т. п.
Ошибки при разработке КС, алгоритмические и программные ошибки приводят к последствиям, аналогичным последствиям сбоев и отказов технических средств. Кроме того, такие ошибки могут быть использованы злоумышленниками для воздействия на ресурсы КС. Особую опасность представляют ошибки в операционных системах (ОС) и в программных средствах защиты информации.
Согласно данным Национального Института Стандартов и Технологий США (NIST) 65% случаев нарушения безопасности информации происходит в результате ошибок пользователей и обслуживающего персонала. Некомпетентное, небрежное или невнимательное выполнение функциональных обязанностей сотрудниками приводят к уничтожению, нарушению целостности и конфиденциальности информации, а также компрометации механизмов защиты.
Характеризуя угрозы информации в КС, не связанные с преднамеренными действиями, в целом, следует отметить, что механизм их реализации изучен достаточно хорошо, накоплен значительный опыт противодействия этим угрозам. Современная технология разработки технических и программных средств, эффективная система эксплуатации КС, включающая обязательное резервирование информации, позволяют значительно снизить потери от реализации угроз этого класса.

2.2. Преднамеренные угрозы

Второй класс угроз безопасности информации в КС составляют преднамеренно создаваемые угрозы.
Данный класс угроз изучен недостаточно, очень динамичен и постоянно пополняется новыми угрозами. Угрозы этого класса в соответствии с их физической сущностью и механизмами реализации могут быть распределены по пяти группам:
* традиционный или универсальный шпионаж и диверсии;
* несанкционированный доступ к информации;
* электромагнитные излучения и наводки;
* модификация структур КС;
* вредительские программы.



2.2.1. Традиционный шпионаж и диверсии

В качестве источников нежелательного воздействия на информационные ресурсы по-прежнему актуальны методы и средства шпионажа и диверсии, которые использовались и используются для добывания или уничтожения информации на объектах, не имеющих КС. Эти методы также действенны и эффективны в условиях применения компьютерных систем. Чаще всего они используются для получения сведений о системе защиты с целью проникновения в КС, а также для хищения и уничтожения информационных ресурсов.
К методам шпионажа и диверсий относятся:
* подслушивание;
* визуальное наблюдение;
* хищение документов и машинных носителей информации;
* хищение программ и атрибутов системы защиты;
* подкуп и шантаж сотрудников;
* сбор и анализ отходов машинных носителей информации;
* поджоги;
* взрывы.
Для подслушивания злоумышленнику не обязательно проникать на объект. Современные средства позволяют подслушивать разговоры с расстояния нескольких сотен метров. Так прошла испытания система подслушивания, позволяющая с расстояния 1 км фиксировать разговор в помещении с закрытыми окнами [23]. В городских условиях дальность действия устройства сокращается до сотен и десятков метров в зависимости от уровня фонового шума. Принцип действия таких устройств основан на анализе отраженного луча лазера от стекла окна помещения, которое колеблется от звуковых волн. Колебания оконных стекол от акустических волн в помещении могут сниматься и передаваться на расстояния с помощью специальных устройств, укрепленных на оконном стекле. Такие устройства преобразуют механические колебания стекол в электрический сигнал с последующей передачей его по радиоканалу. Вне помещений подслушивание ведется с помощью сверхчувствительных направленных микрофонов. Реальное расстояние подслушивания с помощью направленных микрофонов составляет 50-100 метров[48].
Разговоры в соседних помещениях, за стенами зданий могут контролироваться с помощью стетоскопных микрофонов. Стетоскопы преобразуют акустические колебания в электрические. Такие микрофоны позволяют прослушивать разговоры при толщине стен до 50-100 см [65]. Съем информации может осуществляться также и со стекол, металлоконструкций зданий, труб водоснабжения и отопления.
Аудиоинформация может быть получена также путем высокочастотного навязывания. Суть этого метода заключается в воздействии высокочастотным электромагнитным полем или электрическими сигналами на элементы, способные модулировать эти поля, или сигналы электрическими или акустическими сигналами с речевой информацией. В качестве таких элементов могут использоваться различные полости с электропроводной поверхностью, представляющей собой высокочастотный контур с распределенными параметрами, которые меняются под действием акустических волн. При совпадении частоты такого контура с частотой высокочастотного навязывания и при наличии воздействия акустических волн на поверхность полости контур переизлучает и модулирует внешнее поле (высокочастотный электрический сигнал). Чаще всего этот метод прослушивания реализуется с помощью телефонной линии. При этом в качестве модулирующего элемента используется телефонный аппарат, на который по телефонным проводам подается высокочастотный электрический сигнал. Нелинейные элементы телефонного аппарата под воздействием речевого сигнала модулируют высокочастотный сигнал. Модулированный высокочастотный сигнал может быть демоду-лирован в приемнике злоумышленника.
Одним из возможных каналов утечки звуковой информации может быть прослушивание переговоров, ведущихся с помощью средств связи. Контролироваться могут как проводные каналы связи, так и радиоканалы. Прослушивание переговоров по проводным и радиоканалам не требует дорогостоящего оборудования и высокой квалификации злоумышленника.
Дистанционная видеоразведка для получения информации в КС малопригодна и носит, как правило, вспомогательный характер.
Видеоразведка организуется в основном для выявления режимов работы и расположения механизмов защиты информации. Из КС информация реально может быть получена при использовании на объекте экранов, табло, плакатов, если имеются прозрачные окна и перечисленные выше средства размещены без учета необходимости противодействовать такой угрозе.
Видеоразведка может вестись с использованием технических средств, таких как оптические приборы, фото-, кино- и телеаппаратура. Многие из этих средств допускают консервацию (запоминание) видеоинформации, а также передачу ее на определенные расстояния.
В прессе появились сообщения о создании в США мобильного микроробота для ведения дистанционной разведки. Пьезокерамический робот размером около 7 см и массой 60 г способен самостоятельно передвигаться со скоростью 30 см/с в течение 45 мин. За это время «микроразведчик» способен преодолеть расстояние в 810 метров, осуществляя транспортировку 28 г полезного груза (для сравнения - коммерческая микровидеокамера весит 15 г) [68].
Для вербовки сотрудников и физического уничтожения объектов КС также не обязательно иметь непосредственный доступ на объект. Злоумышленник, имеющий доступ на объект КС, может использовать любой из методов традиционного шпионажа.
Злоумышленниками, имеющими доступ на объект, могут использоваться миниатюрные средства фотографирования, видео - и аудиозаписи. Для аудио- и видеоконтроля помещений и при отсутствии в них злоумышленника могут использоваться закладные устройства или «жучки». Для объектов КС наиболее вероятными являются закладные устройства, обеспечивающие прослушивание помещений. Закладные устройства делятся на проводные и излучающие. Проводные закладные устройства требуют значительного времени на установку и имеют существенный демаскирующий признак - провода. Излучающие «закладки» («радиозакладки») быстро устанавливаются, но также имеют демаскирующий признак - излучение в радио или оптическом диапазоне. «Радиозакладки» могут использовать в качестве источника электрические сигналы или акустические сигналы. Примером использования электрических сигналов в качестве источника является применение сигналов внутренней телефонной, громкоговорящей связи. Наибольшее распространение получили акустические «радиозакладки». Они воспринимают акустический сигнал, преобразуют его в электрический и передают в виде радиосигнала на дальность до 8 км [67]. Из применяемых на практике «радиозакладок» подавляющее большинство (около 90%) рассчитаны на работу в диапазоне расстояний 50 - 800 метров.
Для некоторых объектов КС существует угроза вооруженного нападения террористических или диверсионных групп. При этом могут быть применены средства огневого поражения.

2.2.2. Несанкционированный доступ к информации

Термин «несанкционированный доступ к информации» (НСДИ) определен как доступ к информации, нарушающий правила разграничения доступа с использованием штатных средств вычислительной техники или автоматизированных систем [14].
Под правилами разграничения доступа понимается совокупность положений, регламентирующих права доступа лиц или процессов (субъектов доступа) к единицам информации (объектам доступа).
Право доступа к ресурсам КС определяется руководством для каждого сотрудника в соответствии с его функциональными обязанностями. Процессы инициируются в КС в интересах определенных лиц, поэтому и на них накладываются ограничения по доступу к ресурсам.
Выполнение установленных правил разграничения доступа в КС реализуется за счет создания системы разграничения доступа (СРД), которая подробно рассматривается в главе 8.
Несанкционированный доступ к информации возможен только с использованием штатных аппаратных и программных средств в следующих случаях:
* отсутствует система разграничения доступа;
* сбой или отказ в КС;
* ошибочные действия пользователей или обслуживающего персонала компьютерных систем;
* ошибки в СРД;
* фальсификация полномочий.
Если СРД отсутствует, то злоумышленник, имеющий навыки работы в КС, может получить без ограничений доступ к любой информации. В результате сбоев или отказов средств КС, а также ошибочных действий обслуживающего персонала и пользователей возможны состояния системы, при которых упрощается НСДИ. Злоумышленник может выявить ошибки в СРД и использовать их для НСДИ. Фальсификация полномочий является одним из наиболее вероятных путей (каналов) НСДИ.

2.2.3. Электромагнитные излучения и наводки

Процесс обработки и передачи информации техническими средствами КС сопровождается электромагнитными излучениями в окружающее пространство и наведением электрических сигналов в линиях связи, сигнализации, заземлении и других проводниках. Они получили названия побочных электромагнитных излучений и наводок (ПЭМИН). С помощью специального оборудования сигналы принимаются, выделяются, усиливаются и могут либо просматриваться, либо записываться в запоминающих устройствах. Наибольший уровень электромагнитного излучения в КС присущ работающим устройствам отображения информации на электронно-лучевых трубках. Содержание экрана такого устройства может просматриваться с помощью обычного телевизионного приемника, дополненного несложной схемой, основной функцией которой является синхронизация сигналов. Дальность удовлетворительного приема таких сигналов при использовании дипольной антенны составляет 50 метров. Использование направленной антенны приемника позволяет увеличить зону уверенного приема сигналов до 1 км [25]. Восстановление данных возможно также путем анализа сигналов излучения неэкранированного электрического кабеля на расстоянии до 300 метров.
Наведенные в проводниках электрические сигналы могут выделяться и фиксироваться с помощью оборудования, подключаемого к этим проводникам на расстоянии в сотни метров от источника сигналов. Для добывания информации злоумышленник может использовать также «просачивание» информационных сигналов в цепи электропитания технических средств КС.
«Просачивание» информационных сигналов в цепи электропитания возможно при наличии магнитной связи между выходным трансформатором усилителя и трансформатором выпрямительного устройства. «Просачивание» также возможно за счет падения напряжения на внутреннем сопротивлении источника питания при прохождении токов усиливаемых информационных сигналов. Если затухание в фильтре выпрямительного устройства недостаточно, то информационные сигналы могут быть обнаружены в цепи питания. Информационный сигнал может быть выделен в цепи питания за счет зависимости значений потребляемого тока в оконечных каскадах усилителей (информационные сигналы) и значений токов в выпрямителях, а значит и в выходных цепях.
Электромагнитные излучения используются злоумышленниками не только для получения информации, но и для ее уничтожения. Электромагнитные импульсы способны уничтожить информацию на магнитных носителях. Мощные электромагнитные и сверхвысокочастотные излучения могут вывести из строя электронные блоки КС. Причем для уничтожения информации на магнитных носителях с расстояния нескольких десятков метров может быть использовано устройство, помещающееся в портфель.

2.2.4. Несанкционированная модификация структур

Большую угрозу безопасности информации в КС представляет несанкционированная модификация алгоритмической, программной и технической структур системы. Несанкционированная модификация структур может осуществляться на любом жизненном цикле КС. Несанкционированное изменение структуры КС на этапах разработки и модернизации получило название «закладка». В процессе разработки КС «закладки» внедряются, как правило, в специализированные системы, предназначенные для эксплуатации в какой-либо фирме или государственных учреждениях. В универсальные КС «закладки» внедряются реже, в основном для дискредитации таких систем конкурентом или на государственном уровне, если предполагаются поставки КС во враждебное государство. «Закладки», внедренные на этапе разработки, сложно выявить ввиду высокой квалификации их авторов и сложности современных КС.
Алгоритмические, программные и аппаратные «закладки» используются либо для непосредственного вредительского воздействия на КС, либо для обеспечения неконтролируемого входа в систему. Вредительские воздействия «закладок» на КС осуществляются при получении соответствующей команды извне (в основном характерно для аппаратных «закладок») и при наступлении определенных событий в системе. Такими событиями могут быть: переход на определенный режим работы (например, боевой режим системы управления оружием или режим устранения аварийной ситуации на атомной электростанции т.п.), наступление установленной даты, достижение определенной наработки и т. д.
Программные и аппаратные «закладки» для осуществления неконтролируемого входа в программы, использование привилегированных режимов работы (например, режимов операционной системы), обхода средств защиты информации получили название «люки».

2.2.5. Вредительские программы

Одним из основных источников угроз безопасности информации в КС является использование специальных программ, получивших общее название «вредительские программы».
В зависимости от механизма действия вредительские программы делятся на четыре класса:
* «логические бомбы»;
* «черви»;
* «троянские кони»;
* «компьютерные вирусы».
«Логические бомбы» - это программы или их части, постоянно находящиеся в ЭВМ или вычислительных системах (ВС) и выполняемые только при соблюдении определенных условий. Примерами таких условий могут быть: наступление заданной даты, переход КС в определенный режим работы, наступление некоторых событий установленное число раз и т.п.
«Червями» называются программы, которые выполняются каждый раз при загрузке системы, обладают способностью перемещаться в ВС или сети и самовоспроизводить копии. Лавинообразное размножение программ приводит к перегрузке каналов связи, памяти и, в конечном итоге, к блокировке системы.
«Троянские кони» - это программы, полученные путем явного изменения или добавления команд в пользовательские программы. При последующем выполнении пользовательских программ наряду с заданными функциями выполняются несанкционированные, измененные или какие-то новые функции.
«Компьютерные вирусы» - это небольшие программы, которые после внедрения в ЭВМ самостоятельно распространяются путем создания своих копий, а при выполнении определенных условий оказывают негативное воздействие на КС.
Поскольку вирусам присущи свойства всех классов вредительских программ, то в последнее время любые вредительские программы часто называют вирусами.

2.2.6. Классификация злоумышленников

Возможности осуществления вредительских воздействий в большой степени зависят от статуса злоумышленника по отношению к КС. Злоумышленником может быть:
* разработчик КС;
* сотрудник из числа обслуживающего персонала;
* пользователь;
* постороннее лицо.
Разработчик владеет наиболее полной информацией о программных и аппаратных средствах КС и имеет возможность внедрения "закладок" на этапах создания и модернизации систем. Но он, как правило, не получает непосредственного доступа на эксплуатируемые объекты КС. Пользователь имеет общее представление о структурах КС, о работе механизмов защиты информации. Он может осуществлять сбор данных о системе защиты информации методами традиционного шпионажа, а также предпринимать попытки несанкционированного доступа к информации. Возможности внедрения «закладок» пользователями очень ограничены. Постороннее лицо, не имеющее отношения к КС, находится в наименее выгодном положении по отношению к другим злоумышленникам. Если предположить, что он не имеет доступ на объект КС, то в его распоряжении имеются дистанционные методы традиционного шпионажа и возможность диверсионной деятельности. Он может осуществлять вредительские воздействия с использованием электромагнитных излучений и наводок, а также каналов связи, если КС является распределенной.
Большие возможности оказания вредительских воздействий на информацию КС имеют специалисты, обслуживающие эти системы. Причем, специалисты разных подразделений обладают различными потенциальными возможностями злоумышленных действий. Наибольший вред могут нанести работники службы безопасности информации. Далее идут системные программисты, прикладные программисты и инженерно-технический персонал.
На практике опасность злоумышленника зависит также от финансовых, материально-технических возможностей и квалификации злоумышленника.

Контрольные вопросы
1. Раскройте понятие компонент КС и их взаимное влияние.
2. Что понимается под угрозой безопасности информации?
3. Перечислите и охарактеризуйте случайные угрозы.
4. Дайте общую характеристику преднамеренных угроз.
5. Приведите методы традиционного шпионажа и диверсий.
6. В чем состоит особенность определения несанкционированного доступа к информации?
7. Какие физические процессы лежат в основе появления побочных электромагнитных излучений и наводок?
8. Охарактеризуйте особенности угроз безопасности информации, связанных с несанкционированной модификацией структур КС.
9. Назовите особенности такого вида угроз как вредительские программы.
10. Поясните классификацию злоумышленников.





стр. 1
(общее количество: 9)

ОГЛАВЛЕНИЕ

След. стр. >>