<< Пред. стр.

стр. 6
(общее количество: 9)

ОГЛАВЛЕНИЕ

След. стр. >>

* каналы связи;
* концентраторы;
* межсетевые шлюзы (мосты).
Основной функцией коммуникационных модулей является передача полученного пакета к другому КМ или абонентскому пункту в соответствии с маршрутом передачи. Коммуникационный модуль называют также центром коммутации пакетов.
Каналы связи объединяют элементы сети в единую сеть. Каналы могут иметь различную скорость передачи данных. Концентраторы используются для уплотнения информации перед передачей ее по высокоскоростным каналам. Межсетевые шлюзы и мосты используются для связи сети с ЛВС или для связи сегментов глобальных сетей. С помощью мостов связываются сегменты сети с одинаковыми сетевыми протоколами.
В любой РКС в соответствии с функциональным назначением может быть выделено три подсистемы:
* пользовательская подсистема;
* подсистема управления;
* коммуникационная подсистема.
Пользовательская или абонентская подсистема включает в себя компьютерные системы пользователей (абонентов) и предназначается для удовлетворения потребностей пользователей в хранении, обработке и получении информации.



Рис. 24. Фрагмент распределенной компьютерной системы
Наличие подсистемы управления позволяет объединить все элементы РКС в единую систему, в которой взаимодействие элементов осуществляется по единым правилам. Подсистема обеспечивает взаимодействие элементов системы путем сбора и анализа служебной информации и воздействия на элементы с целью создания оптимальных условий для функционирования всей сети.
Коммуникационная подсистема обеспечивает передачу информации в сети в интересах пользователей и управления РКС.
Функционирование РКС можно рассматривать как взаимодействие удаленных процессов через коммуникационную подсистему. Процессы вычислительной сети порождаются пользователями (абонентами) и другими процессами. Взаимодействие удаленных процессов заключается в обмене файлами, пересылке сообщений по электронной почте, посылке заявок на выполнение программ и получение результатов, обращении к базам данных и т.д.

11.2. Особенности защиты информации в РКС

С точки зрения защиты информации в РКС важно разделить вычислительные сети на корпоративные и общедоступные. В корпоративных сетях все элементы принадлежат одному ведомству за исключением, может быть, каналов связи. В таких сетях имеется возможность проводить единую политику обеспечения безопасности информации во всей сети. Примерами таких корпоративных сетей могут служить сети государственного и военного управления, сети авиационных и железнодорожных компаний и др. Противоположностью таким сетям являются общедоступные коммерческие сети, в которых во главу угла ставится распространение информации, а вопросы защиты собственных информационных ресурсов решаются, в основном, на уровне пользователей. В качестве примера такой сети можно привести сеть Internet. Корпоративные сети могут быть связаны с общедоступными сетями. В этом случае администрации (владельцам) корпоративных сетей необходимо предпринимать дополнительные меры предосторожности для блокирования возможных угроз со стороны общедоступных сетей.
При построении системы защиты информации в любой распределенной КС необходимо учитывать:
* сложность системы, которая определяется как количеством подсистем, так и разнообразием их типов и выполняемых функций;
* невозможность обеспечения эффективного контроля за доступом к ресурсам, распределенным на больших расстояниях, возможно за пределами границ страны;
* возможность принадлежности ресурсов сети различным владельцам.
Особенностью защиты информации от непреднамеренных угроз в РКС по сравнению с сосредоточенными сетями является необходимость обеспечения гарантированной передачи информации по коммуникационной подсети. Для этого в РКС должны быть предусмотрены дублирующие маршруты доставки сообщений, предприняты меры против искажения и потери информации в каналах связи. Такие сложные системы должны строиться как адаптивные, в которых обеспечивается постоянный контроль работоспособности элементов системы и возможность продолжения функционирования даже в условиях отказов отдельных подсистем. Искажения информации в каналах связи фиксируются и частично исправляются с помощью помехоустойчивого кодирования. Потери информации исключаются за счет использования контроля и учета принятых сообщений, а также за счет применения протоколов обмена с подтверждением о приеме информации.
В РКС все потенциальные преднамеренные угрозы безопасности информации делят на две группы: пассивные и активные.
К пассивным относятся угрозы, целью реализации которых является получение информации о системе путем прослушивания каналов связи. Подключившись к каналам связи или являясь пользователем системы, злоумышленник может:
* получить информацию путем перехвата незашифрованных сообщений;
* анализировать трафик (поток сообщений), накапливая информацию об интенсивности обмена отдельных абонентов, о структуре сообщений, о маршрутах доставки сообщений и т. п.
Активные угрозы предусматривают воздействие на передаваемые сообщения в сети и несанкционированную передачу фальсифицированных сообщений с целью воздействия на информационные ресурсы объектов РКС и дестабилизацию функционирования системы. Возможно также непосредственное воздействие на коммуникационную подсистему с целью повреждения аппаратных средств передачи информации.
Передаваемые в РКС сообщения могут несанкционированно модифицироваться или уничтожаться. Злоумышленник может размножать перехваченные сообщения, нарушать их очередность следования, изменять маршрут доставки, подменять сообщения. Злоумышленник может предпринять попытки несанкционированного доступа к информационным ресурсам удаленного объекта КС, осуществления несанкционированного изменения программной структуры КС путем внедрения вредительских программ.
Анализируя приведенные особенности потенциальных угроз безопасности информации в РКС, можно сделать вывод, что все они связаны с передачей информации по каналам связи, с территориальной разобщенностью объектов системы. Таким образом, в РКС наряду с мерами, предпринимаемыми для обеспечения безопасности информации в сосредоточенных КС, реализуется ряд механизмов для защиты информации при передаче ее по каналам связи, а также для защиты от несанкционированного воздействия на информацию КС с использованием каналов связи.
Все методы и средства, обеспечивающие безопасность информации в защищенной вычислительной сети, могут быть распределены по группам:
* обеспечение безопасности информации в пользовательской подсистеме и специализированных коммуникационных КС;
* защита информации на уровне подсистемы управления сетью;
* защита информации в каналах связи;
* обеспечение контроля подлинности взаимодействующих процессов.

11.3. Обеспечение безопасности информации в пользовательской подсистеме и специализированных коммуникационных КС

Обеспечение безопасности информации на объектах РКС практически не отличается от решения такой задачи для сосредоточенных систем. Особенностью защиты объектов РКС является необходимость поддержки механизмов аутентификации и разграничения доступа удаленных процессов к ресурсам объекта, а также наличие в сети специальных коммуникационных компьютерных систем. Учитывая важность проблемы подтверждения подлинности удаленных процессов (пользователей), механизмы ее решения выделены в отдельную группу.
Все элементы коммуникационной подсистемы, за исключением каналов связи, рассматриваются как специализированные коммуникационные компьютерные системы. В защищенных корпоративных сетях концентраторы, коммуникационные модули (серверы), шлюзы и мосты целесообразно размещать на объектах совместно с КС пользователей. Особенностью всех коммуникационных КС является информация, которая обрабатывается этими системами. В таких КС осуществляется смысловая обработка только служебной информации. К служебной относится адресная информация, избыточная информация для защиты сообщений от искажений, идентификаторы пользователей, метки времени, номера сообщений (пакетов), атрибуты шифрования и другая информация. Информация пользователей, заключенная в сообщениях (рабочая информация), на уровне коммуникационных КС рассматривается как последовательность бит, которая должна быть доставлена по коммуникационной подсистеме без изменений. Поэтому в таких системах имеется принципиальная возможность не раскрывать содержание рабочей информации. Она не должна быть доступной операторам и другому обслуживающему персоналу коммуникационных компьютерных систем для просмотра на экране монитора, изменения, уничтожения, размножения, запоминания в доступной памяти, получения твердой копии. Такая информация не должна сохраняться на внешних запоминающих устройствах после успешной передачи сообщения другому элементу коммуникационной подсистемы. В закрытых системах рабочая информация, кроме того, в пределах коммуникационной подсети циркулирует в зашифрованном виде.
Различают два вида шифрования в КС: шифрование в коммуникационной подсистеме - линейное - и межконцевое шифрование - абонентское [37]. Абонент перед отправкой осуществляет зашифрование сообщения с помощью симметричного или открытого ключа. На входе в коммуникационную подсистему сообщение подвергается линейному зашифрованию, даже если абонентское шифрование и не выполнялось. При линейном шифровании сообщение зашифровывается полностью, включая все служебные данные. Причем линейное шифрование может осуществляться в сети с разными ключами. В этом случае злоумышленник, имея один ключ, может получить доступ к информации, передаваемой в ограниченном количестве каналов. Если используются различные ключи, то в коммуникационных модулях осуществляется расшифрование не только служебной информации, а всего сообщения полностью (рабочая информация остается зашифрованной на абонентском уровне). По открытой служебной информации осуществляется проверка целостности сообщения, выбор дальнейшего маршрута и передача «квитанции» отправителю. Сообщение подвергается зашифрованию с новым ключом и передается по соответствующему каналу связи.
Особые меры защиты должны предприниматься в отношении центра управления сетью. Учитывая концентрацию информации, критичной для работы всей сети, необходимо использовать самые совершенные средства защиты информации специализированной КС администратора сети как от непреднамеренных, так и преднамеренных угроз. Особое внимание должно обращаться на защиту процедур и средств, связанных с хранением и работой с ключами.
Администратор сети как и все операторы коммуникационной подсети, работает только со служебной информацией. Если в сети ключи для абонентского шифрования распределяются из центра управления сетью, то администратор может получить доступ ко всем ключам сети, а, следовательно, и ко всей передаваемой и хранимой в сети информации. Поэтому в специализированной КС администратора сети должны быть предусмотрены механизмы, блокирующие возможность работы с информационной частью сообщений, которые не предназначаются администратору.
Более надежным является способ управления ключами, когда они неизвестны ни администратору, ни абонентам. Ключ генерируется датчиком случайных чисел и записывается в специальное ассоциативное запоминающее устройство, и все действия с ним производятся в замкнутом пространстве, в которое оператор КС не может попасть с целью ознакомления с содержимым памяти. Нужные ключи выбираются из специальной памяти для отсылки или проверки в соответствии с идентификатором абонента или администратора.
При рассылке ключей вне РКС их можно записывать, например, на смарт-карты. Считывание ключа с таких карт возможно только при положительном результате аутентификации КС и владельца ключа.

11.4. Защита информации на уровне подсистемы управления РКС

Управление передачей сообщений осуществляется по определенным правилам, которые называются протоколами [37]. В настоящее время в распределенных вычислительных сетях реализуются два международных стандарта взаимодействия удаленных элементов сети: протокол TCP/IP и протокол Х.25.
Протокол TCP/IP был разработан в 70-е годы и с тех пор завоевал признание во всем мире. На основе протокола TCP/IP построена сеть Internet. Протокол Х.25 явился дальнейшим развитием технологии передачи данных, построенной на основе коммутации пакетов. Протокол Х.25 создан в соответствии с моделью взаимодействия открытых сетей (OSI), разработанной Международной организацией стандартизации (ISO). В соответствии с моделью все функции сети разбиваются на 7 уровней, а в модели ТСРЛР насчитывается 5 уровней (рис. 25).
Протокол Х.25 позволяет обеспечить более надежное взаимодействие удаленных процессов. Достоинствами протокола ТСРЛР являются сравнительно низкая стоимость и простота подключения к сети.
Задачи обеспечения безопасности информации в сети решаются на всех уровнях. Выполнение протоколов организуется с помощью подсистемы управления. Наряду с другими на уровне подсистемы управления решаются следующие проблемы защиты информации в РКС.
1. Создание единого центра управления сетью, в котором решались бы и вопросы обеспечения безопасности информации. Администратор и его аппарат проводят единую политику безопасности во всей защищенной сети.
2. Регистрация всех объектов сети и обеспечение их защиты. Выдача идентификаторов и учет всех пользователей сети.
3.У правление доступом к ресурсам сети.
4. Генерация и рассылка ключей шифрования абонентам компьютерной сети.
5. Мониторинг трафика (потока сообщений в сети), контроль соблюдения правил работы абонентами, оперативное реагирование на нарушения.
6. Организация восстановления работоспособности элементов сети при нарушении процесса их функционирования.



Рис. 25. Уровневые модели протоколов
11.5. Защита информации в каналах связи

Для защиты информации, передаваемой по каналам связи, применяется комплекс методов и средств защиты, позволяющих блокировать возможные угрозы безопасности информации. Наиболее надежным и универсальным методом защиты информации в каналах связи является шифрование. Шифрование на абонентском уровне позволяет защитить рабочую информацию от утраты конфиденциальности и навязывания ложной информации. Линейное шифрование позволяет, кроме того, защитить служебную информацию. Не имея доступа к служебной информации, злоумышленник не может фиксировать факт передачи между конкретными абонентами сети, изменить адресную часть сообщения с целью его переадресации.
Противодействие ложным соединениям абонентов (процессов) обеспечивается применением целого ряда процедур взаимного подтверждения подлинности абонентов или процессов. Против удаления, явного искажения, переупорядочивания, передачи дублей сообщений используется механизм квитирования, нумерации сообщений или использования информации о времени отправки сообщения. Эти служебные данные должны быть зашифрованы. Для некоторых РКС важной информацией о работе системы, подлежащей защите, является интенсивность обмена по коммуникационной подсети. Интенсивность обмена может быть скрыта путем добавления к рабочему трафику обмена специальными сообщениями. Такие сообщения могут содержать произвольную случайную информацию. Дополнительный эффект такой организации обмена заключается в тестировании коммуникационной подсети. Общий трафик с учетом рабочих и специальных сообщений поддерживается примерно на одном уровне.
Попыткам блокировки коммуникационной подсистемы путем интенсивной передачи злоумышленником сообщений или распространения вредительских программ типа «червь», в подсистеме управления РКС должны быть созданы распределенные механизмы контроля интенсивности обмена и блокирования доступа в сеть абонентов при исчерпании ими лимита активности или- в случае угрожающего возрастания трафика. Для блокирования угроз физического воздействия на каналы связи (нарушение линий связи или постановка помех в радиоканалах) необходимо иметь дублирующие каналы с возможностью автоматического перехода на их использование.

11.5.1.Межсетевое экранирование

На практике часто закрытые корпоративные распределенные и сосредоточенные КС связаны с общедоступными сетями типа Internet. Режимы взаимодействия пользователей закрытой РКС с общедоступной системой могут быть различны:
* с помощью общедоступной РКС связываются в единую систему закрытые сегменты корпоративной системы или удаленные абоненты;
* пользователи закрытой РКС взаимодействуют с абонентами общедоступной сети.
В первом режиме задача подтверждения подлинности взаимодействующих абонентов (процессов) решается гораздо эффективнее, чем во втором режиме. Это объясняется возможностью использования абонентского шифрования при взаимодействии КС одной корпоративной сети.
Если абоненты общедоступной сети не используют абонентское шифрование, то практически невозможно обеспечить надежную аутентификацию процессов, конфиденциальность информации, защиту от подмены и несанкционированной модификации сообщений.
Для блокирования угроз, исходящих из общедоступной системы, используется специальное программное или аппаратно-программное средство, которое получило название межсетевой экран (Firewall) (рис. 26). Как правило, межсетевой экран реализуется на выделенной ЭВМ, через которую защищенная РКС (ее фрагмент) подключается к общедоступной сети.



Рис. 26. Соединение сетей с помощью межсетевого экрана

Межсетевой экран реализует контроль за информацией, поступающей в защищенную РКС и (или) выходящей из защищенной системы [27].
Межсетевой экран выполняет четыре функции:
* фильтрация данных;
* использование экранирующих агентов;
* трансляция адресов;
* регистрация событий.
Основной функцией межсетевого экрана является фильтрация входного (выходного) трафика. В зависимости от степени защищенности корпоративной сети могут задаваться различные правила фильтрации. Правила фильтрации устанавливаются путем выбора последовательности фильтров, которые разрешают или запрещают передачу данных (пакетов) на следующий фильтр или уровень протокола.
Межсетевой экран осуществляет фильтрацию на канальном, сетевом, транспортном и на прикладном уровнях. Чем большее количество уровней охватывает экран, тем он совершеннее. Межсетевые экраны, предназначенные для защиты информации высокой степени важности, должны обеспечивать [13]:
* фильтрацию по адресам отправителя и получателя (или по другим эквивалентным атрибутам);
* фильтрацию пакетов служебных протоколов, служащих для диагностики и управления работой сетевых устройств;
* фильтрацию с учетом входного и выходного сетевого интерфейса как средство проверки подлинности сетевых адресов;
* фильтрацию с учетом любых значимых полей сетевых пакетов;
* фильтрацию на транспортном уровне запросов на установление виртуальных соединений;
* фильтрацию на прикладном уровне запросов к прикладным сервисам;
* фильтрацию с учетом даты и времени;
* возможность сокрытия субъектов доступа защищаемой компьютерной сети;
* возможность трансляции адресов.
В межсетевом экране могут использоваться экранирующие агенты (proxy-серверы), которые являются программами-посредниками и обеспечивают установление соединения между субъектом и объектом доступа, а затем пересылают информацию, осуществляя контроль и регистрацию. Дополнительной функцией экранирующего агента является сокрытие от субъекта доступа истинного объекта. Действия экранирующего агента являются прозрачными для участников взаимодействия.
Функция трансляции адресов межсетевого экрана предназначена для скрытия от внешних абонентов истинных внутренних адресов. Это позволяет скрыть топологию сети и использовать большее число адресов, если их выделено недостаточно для защищенной сети.
Межсетевой экран выполняет регистрацию событии в специальных журналах. Предусматривается возможность настройки экрана на ведение журнала с требуемой для конкретного применения полнотой. Анализ записей позволяет зафиксировать попытки нарушения установленных правил обмена информацией в сети и выявить злоумышленника.
Экран не является симметричным. Он различает понятия: «снаружи» и «внутри». Экран обеспечивает защиту внутренней области от неконтролируемой и потенциально враждебной внешней среды. В то же время экран позволяет разграничить доступ к объектам общедоступной сети со стороны субъектов защищенной сети. При нарушении полномочий работа субъекта доступа блокируется, и вся необходимая информация записывается в журнал.
Межсетевые экраны могут использоваться и внутри защищенных корпоративных сетей. Если в РКС имеются фрагменты сети с различной степенью конфиденциальности информации, то такие фрагменты целесообразно отделять межсетевыми экранами. В этом случае экраны называют внутренними.
В зависимости от степени конфиденциальности и важности информации установлены 5 классов защищенности межсетевых экранов [13]. Каждый класс характеризуется определенной минимальной совокупностью требований по защите информации. Самый низкий класс защищенности - пятый, а самый высокий - первый. Межсетевой экран первого класса устанавливается при обработке информации с грифом «особой важности».
Межсетевые экраны целесообразно выполнять в виде специализированных систем. Это должно повысить производительность таких систем (весь обмен осуществляется через экран), а также повысить безопасность информации за счет упрощения структуры. Учитывая важность межсетевых экранов в обеспечении безопасности информации во всей защищенной сети, к ним предъявляются высокие требования по разграничению доступа, обеспечению целостности информации, восстанавливаемости, тестированию и т. п. Обеспечивает работу межсетевого экрана администратор. Желательно рабочее место администратора располагать непосредственно у межсетевого экрана, что упрощает идентификацию и аутентификацию администратора, а также упрощает выполнение функций администрирования.
В сетях с большой интенсивностью обмена межсетевой экран может быть реализован на двух и более ЭВМ, которые целесообразно размещать на одном объекте. Функции межсетевого экрана и шлюза (моста) могут быть реализованы на одной КС. На практике часто фрагменты защищенной сети связываются между собой через общедоступную сеть. Все фрагменты подключаются к общедоступной сети через межсетевые экраны.

11.5.2. Подтверждение подлинности взаимодействующих процессов

Одной из центральных проблем обеспечения безопасности информации в вычислительной сети является проблема взаимоподтверждения подлинности взаимодействующих процессов. Логическую связь взаимодействующих процессов определяют термином соединение. Процедура аутентификации выполняется обычно в начале взаимодействия в процессе установления соединения.
Удаленные процессы до начала взаимодействия должны убедиться в их подлинности. Взаимная проверка подлинности взаимодействующих процессов может осуществляться следующими способами [26]:
* обмен идентификаторами;
* процедура «рукопожатия»;
* аутентификация при распределении ключей.
Обмен идентификаторами применим, если в сети используется симметричное шифрование. Зашифрованное сообщение, содержащее идентификатор, однозначно указывает, что сообщение создано пользователем, который знает секретный ключ шифрования и личный идентификатор. Существует единственная возможность для злоумышленника попытаться войти во взаимодействие с нужным процессом - запоминание перехваченного сообщения с последующей выдачей в канал связи. Блокирование такой угрозы осуществляется с помощью указания в сообщении времени отправки сообщения. При проверке сообщения достаточно просмотреть журнал регистрации сеансов в КС получателя сообщения. Вместо времени может использоваться случайное число, которое генерируется перед каждой отправкой.
Различают два варианта выполнения процедуры «рукопожатия»: обмен вопросами и ответами, а также использование функции f, известной только процессам, устанавливающим взаимодействие. Процессы обмениваются вопросами, ответы на которые не должны знать посторонние. Вопросы могут касаться, например, биографических данных субъектов, в интересах которых инициированы процессы.
Алгоритм использования функции f для аутентификации процессов А и В представляет собой последовательность следующих шагов[26]:
Шаг 1. Процесс А генерирует величину х и отсылает ее процессу В.
Шаг 2. Процесс В по секретному алгоритму вычисляет функцию у = f(x) и отсылает ее процессу А.
Шаг 3. Процесс А вычисляет функцию у = f(x) и сравнивает ее с полученной от процесса В.
Если результаты сравнения положительны, то делается вывод о подлинности взаимодействующих процессов.
Процедура установления подлинности осуществляется также при распределении сеансовых ключей. Распределение ключей является одной из процедур управления ключами. Можно выделить следующие процедуры управления ключами: генерация, распределение, хранение и смена ключей.
Обычно выделяют две категории ключей: ключи шифрования данных и ключи шифрования ключей при передаче их по каналам связи и хранении. Многократное использование одного и того же ключа повышает его уязвимость, поэтому ключи шифрования данных должны регулярно сменяться. Как правило, ключи шифрования данных меняются в каждом сеансе работы и поэтому их называют сеансовыми ключами.
В процессе генерации ключи должны получаться случайным образом. Этому требованию в наибольшей степени отвечает генератор псевдослучайной последовательности, использующий в качестве исходных данных показания таймера.
Секретные ключи хранятся в запоминающем устройстве только в зашифрованном виде. Ключ от зашифрованных ключей может быть зашифрован с помощью другого ключа. Последний ключ хранится в открытом виде, но в специальной памяти. Он не может быть считан, просмотрен, изменен или уничтожен в обычном режиме работы. Этот ключ называется главным или мастер-ключом.
Проблема распределения симметричных ключей в больших сетях не является тривиальной. Каждой паре взаимодействующих абонентов сети необходимо доставить по одному одинаковому ключу. Если необходимо предусмотреть возможность независимого обмена абонентов по принципу: "каждый с каждым", то в сети из 200 абонентов необходимо каждому из них доставить 199 мастер-ключей. Тогда в ЦРК необходимо сгенерировать N ключей. Количество ключей определяется по формуле:

где n — количество абонентов сети. При n = 200 получается N=9900.
Мастер-ключи при симметричном шифровании и секретные ключи при несимметричном шифровании распространяются вне РКС. При большом числе абонентов и их удалении на значительные расстояния друг от друга задача распространения мастер-ключей является довольно сложной. При несимметричном шифровании количество секретных ключей равно количеству абонентов сети. Кроме того, использование несимметричного шифрования не требует распределения сеансовых ключей, что сокращает обмен служебной информацией в сети. Списки открытых ключей всех абонентов могут храниться у каждого абонента сети. Однако у симметричного шифрования есть и два существенных преимущества. Симметричное шифрование, например, по алгоритму DES занимает значительно меньше времени по сравнению с алгоритмами несимметричного шифрования.
В системах с симметричным шифрованием проще обеспечивать взаимное подтверждение подлинности абонентов (процессов). Знание секретного ключа, общего для двух взаимодействующих процессов, дополненное защитными механизмами от повторной передачи, является основанием считать взаимодействующие процессы подлинными.
Совместить достоинства обоих методов шифрования удалось благодаря разработке У. Диффи и М. Хеллманом метода получения секретного сеансового ключа на основе обмена открытыми ключами (рис.27). По известному виду и значениям функций f(x) и f(y) при больших значениях х, у, а и р (больше 200 бит) практически невозможно за приемлемое время восстановить секретные ключи х и у.
Распределение ключей в сети между пользователями реализуется двумя способами:
1. Путем создания одного или нескольких центров распределения ключей (ЦРК).
2. Прямой обмен сеансовыми ключами между абонентами сети.
Недостатком первого способа является наличие возможности доступа в ЦРК ко всей передаваемой по сети информации. В случае организации прямого обмена сеансовыми ключами возникают сложности в проверке подлинности процессов или абонентов.
Распределение ключей совмещается с процедурой проверки подлинности взаимодействующих процессов.
Протоколы распределения ключей для систем с симметричными и несимметричными ключами отличаются.

А. Проверка подлинности процессов при распределении ключей с использованием ЦРК

Пусть вызывающий процесс обозначается через А, а вызываемый - через В. Оба процесса (абонента) имеют идентификаторы ia и ib- Абоненты имеют также мастер-ключи КМА КМВ, известные только соответственно А и В, а также ЦРК. Мастер-ключи распределяются между абонентами вне РКС. Это может быть специальная почта, другие автоматизированные системы и т. п.
Абонент А посылает в ЦРК в открытом виде идентификатор ia и зашифрованные на КМА идентификатор IВ, случайное число r1 и просьбу обеспечить связь с В [26]:
1. А —> ЦРК : IA, КМA (IB, r1 «Прошу установить связь с В»). По открытому идентификатору 1д соответствующая процедура
обеспечивает выбор мастер-ключа КМА, расшифровывает сообщение, а затем генерируется сеансовый ключ KS и отсылается зашифрованное сообщение А:
2. ЦРК —> A : КМA (r1, KS, IB, KMB (KS, IA))
Это сообщение может расшифровать только абонент А, имеющий ключ КМА. Случайное число r1 подтверждает, что полученное сообщение не является повторным, а выдано ЦРК в ответ на сообщение А. Абонент А оставляет у себя KS, генерирует случайное число r2 и отправляет сообщение абоненту В:
3. А —> В : КМВ (KS, IA), KS (r2).


Рис. 27. Схема получения секретного сеансового ключа К

Сообщение может расшифровать только В. Полученный идентификатор IА указывает, что именно абонент А инициирует сеанс связи. Часть сообщения, зашифрованная мастер-ключом КМВ, подтверждает, что сеансовый ключ KS получен в ЦРК. Абонент В расшифровывает с помощью KS случайное число r2. Если используется односторонняя процедура подтверждения подлинности, то абонент В передает абоненту А сообщение:
4.B —> A : KS (f(r2)).
Такая процедура не обеспечивает полной уверенности В в том, что именно А является действительным инициатором обмена. Так существует возможность попытки повторной посылки сообщения 4 злоумышленником С позднее. Такое воздействие практически не будет иметь отрицательных последствий для В, так как у С нет сеансового ключа ks. Он не сможет ни прочесть сообщение В, ни послать ему фальсифицированное сообщение. Чтобы исключить и такую возможность, необходимо использовать процедуру тройного «рукопожатия». Тогда вместо сообщения 4 абонент В посылает А следующее сообщение:
4'. В —> А : KS (r2, r3), где r3 - случайное число.
В ответ А передает сообщение, подтверждающее его подлинность:
5. А —> В : KS (r3)
Если все шаги выполнены успешно, то считается, что абоненты А и В - подлинные, и они могут проводить сеанс обмена сообщениями с помощью ключа KS.
Недостатками такого алгоритма проверки подлинности и распределения ключей являются:
* большая нагрузка на ЦРК, так как при каждом сеансе осуществляется обращение к ЦРК;
4 очень высокие требования предъявляются к защищенности и отказоустойчивости ЦРК.
Процедура взаимного подтверждения подлинности в системах с открытым ключом также заключается в обмене ключами и последующем подтверждении подлинности. Администратор ЦРК имеет доступ к открытому ключу КОЦРК и закрытому ключу КЗЦРК, а также к открытым ключам всех абонентов сети. Абонент А обращается с запросом в ЦРК для получения своего открытого ключа и открытого ключа вызываемого абонента В:
1. А —> ЦРК : IА, IB, «Вышлите ключи».
В ответ на полученный запрос ЦРК формирует сообщение, зашифрованное с помощью закрытого ключа ЦРК. Отдельно зашифровывается открытый ключ А и его идентификатор, а также открытый ключ абонента В и его идентификатор.
2. ЦРК —> А : КЗЦРК (КОА, IА), КЗЦРК (КОВ, IВ).
Абонент А расшифровывает сообщение с помощью открытого ключа КОЦРК, который доставлен ему надежным путем. Полученные идентификаторы абонентов А и В подтверждают, что ЦРК правильно воспринял запрос и КОВ - открытый ключ абонента В.
На следующем шаге процедуры абонент А посылает абоненту В сообщение, в котором сгенерированное число r1 и идентификатор IА зашифрованы открытым ключом КОВ, а открытый ключ КОА и идентификатор IА зашифрованы закрытым ключом ЦРК.
3. А —> В : КОВ (r1, IА), КЗЦРК (КОА, IА).
Абонент В расшифровывает первую часть сообщения с помощью своего закрытого ключа КЗВ, а вторую часть - с помощью открытого ключа КОЦРК. На основании полученной информации абонент В делает вывод, что связь с ним устанавливает абонент А, что подтверждается зашифрованием открытого ключа А и его идентификатора с помощью секретного ключа ЦРК КЗЦРК. После шага 3 абоненты А и В имеют по два открытых ключа. Если используется одностороннее подтверждение подлинности, то на последнем шаге В посылает сообщение:
4. В —> А : КОА (f(r1).
Если расшифрованное число r1 совпадает с тем, которое посылалось абоненту В, то абонент А получает подтверждение подлинности абонента В, так как число r1 при передаче по сети было зашифровано открытым ключом абонента В и могло быть расшифровано только владельцем закрытого ключа абонента В. Если используется процедура взаимного подтверждения подлинности, то осуществляется трехстороннее «рукопожатие». Тогда на четвертом шаге абонент В, наряду с числом r1 передает абоненту А сгенерированное им случайное число r2.
4'. В —> А : КОА (r1, г2).
В ответ абонент А передает сообщение:
5. А —> В : КОВ (r2).
Вместо случайных чисел в процедуре взаимного подтверждения могут использоваться временные метки. Если сообщение принимается после истечения контрольного интервала времени от создания сообщения до его получения, то такое сообщение считается фальсифицированным. Реализация такой процедуры затрудняется в больших сетях. Во-первых, в них сложнее поддерживать единое время. Во-вторых, разброс во времени доставки может колебаться в довольно широких пределах. Это связано с возможными изменениями маршрутов, а также повторных передач при сбоях в каналах связи.
Примером реальной системы, в которой реализован принцип подтверждения подлинности процессов при распределении ключей с использованием ЦРК, является вычислительная сеть со специальным сервером аутентификации Kerberos. Клиентские компоненты Kerberos присутствуют в большинстве современных операционных систем (наиболее полно в ОС Solaris). В защищенном сервере Kerberos хранятся секретные ключи всех абонентов сети.
Процедура подтверждения подлинности клиента с и сервера s реализуется следующей последовательностью шагов.
1. Клиент с —> Kerberos: Ic, s1 timeexp, r1
Клиент с передает Kerberos в открытом виде свой идентификатор Iс, запрашиваемый сервис s1 срок годности билета timeexp и случайное число r1
2. Kerberos —> клиент с: Kc(Kcs, timeexp, r1); Ks(Kcs).
Kerberos возвращает сеансовый ключ Kcs, идентификатор сервера Is, атрибуты timeexp и r1 зашифрованные ключом клиента, а также сеансовый ключ Kcs, зашифрованный ключом сервера с.
3. Клиент с —> сервер s: Kcs (Ic, ts, ck); Ks(Kcs).
Клиент посылает серверу свой идентификатор Ic, временной штамп ts и контрольную сумму ck, зашифрованные сеансовым ключом, а также пересылает без изменений зашифрованный ключ Ks(Kcs), который называется билетом.
4. Сервер s —> клиент с: Kcs(Is, ts).
Сервер подтверждает свою подлинность; возвращая дополнительную информацию, зашифрованную сеансовым ключом.
Каждый сервер Kerberos обслуживает определенную область управления. Чтобы субъекты из различных областей управления могли общаться друг с другом, серверам Kerberos необходимо обмениваться секретными ключами.

Б. Проверка подлинности взаимодействующих процессов при прямом обмене сеансовыми ключами

Необходимо рассмотреть процедуры проверки подлинности при прямом обмене с секретным и открытым ключом [26].
1. Процедура подтверждения подлинности при взаимном обмене с секретным ключом.
Абоненты А и В используют общий для них секретный ключ кав, полученный ранее (вне РКС). Процедура выполняется за три шага.
l. A —> B : IA, r1.
На первом шаге инициатор обмена абонент А передает в открытом виде абоненту В свой идентификатор IA и случайное число r1. Это сообщение могло быть послано любым абонентом сети.
2. B —> A : KAB (f(r1), IB, r2, KS).
На шаге 2 абонент В генерирует случайное число r2 и сеансовый ключ KS, посылает А сообщение, зашифрованное общим секретным ключом KAB. Абонент может быть уверен, что сообщение пришло от В, т. к. только ему известен ключ КАВ. Функция f (r1) подтверждает, что сообщение получено в ответ на сообщение 1, а не является повтором старого сообщения.
3. A —> B : KS (f (r2)).
На шаге 3 абонент А подтверждает, что сеансовый ключ находится именно у него. На этом процедура завершается.
Процедура подтверждения подлинности в процессе двустороннего распределения сеансового ключа в сети с применением открытых ключей также выполняется за три шага.
1. А —> В : КОB (r1,IА).
На первом шаге абонент зашифровывает сообщение для В с помощью открытого ключа КОВ. Случайное число r1 и идентификатор абонента А может прочесть только абонент В с помощью секретного личного ключа.
2. В —> А : KOA(f(r1), r2,IB, KS).
На втором шаге абонент вычисляет функцию f(r1). генерирует случайное число r2 и сеансовый ключ ks и зашифровывает все сообщение с помощью открытого ключа абонента А. Абонент А делает вывод, что сообщение 1 получено абонентом В.
3.Ac—> B : KS (f (r2)).
Взаимное опознание заканчивается на шаге 3 получением зашифрованной функции f(r2). Абонент В убеждается, что сеансовый ключ передан именно абоненту А.
Если даже сеансовые ключи передаются, минуя РКС. то распределение мастер-ключей и индивидуальных ключей абонентов в защищенной корпоративной сети осуществляется ЦРК.

11.6. Подтверждение подлинности информации, получаемой
по коммуникационной подсети

После установления соединения необходимо обеспечить защиту от фальсификации в процессе обмена сообщениями. Для этого требуется обеспечить выполнение следующих четырех условий[26]:
1) получатель должен быть уверен в истинности источника данных;
2) получатель должен быть уверен в истинности представляемых данных;
3) отправитель должен быть уверен в доставке данных получателю;
4) отправитель должен быть уверен в истинности полученного подтверждения о приеме информации.
Подтверждение истинности источника данных и истинности передаваемых (доставленных) данных осуществляется с помощью цифровой подписи. Подтверждение приема сообщений обеспечивается организацией режима передачи квитанций. Квитанция представляет собой короткое сообщение, содержащее контрольную информацию о принятом сообщении и электронную подпись. В качестве контрольной информации могут использоваться зашифрованные данные о номере полученного сообщения и времени получения, а также цифровая подпись отправителя рабочего сообщения. Получив такую квитанцию, заверенную цифровой подписью, отправитель делает вывод об успешной передаче сообщения.
Цифровая подпись сообщения представляет собой контрольную двоичную последовательность. Она получается путем специальных преобразований хэш-функции от данных сообщения и секретного ключа отправителя сообщения. Таким образом цифровая подпись, с одной стороны, несет в себе контрольную характеристику (хэш-функцию) содержимого сообщения, а с другой -однозначно указывает на связь содержимого сообщения и владельца секретного ключа. Использование хэш-функции позволяет зафиксировать подмену или модификацию данных сообщения. Порядок получения хэш-функции приведен в гл.7. При удовлетворительных результатах проверки цифровой подписи получатель может быть уверен, что полученное сообщение пришло от субъекта, владеющего секретным ключом, и содержательная часть сообщения не подвергалась изменениям. Если цифровая подпись получается в соответствии с официальным государственным стандартом, то она имеет юридическую силу обычной подписи под документом.
Впервые идею цифровой подписи предложили в 1976 году американские специалисты У. Диффи и М. Хеллман. В настоящее время для получения цифровой подписи используются методы, применяемые в шифровании с несимметричными ключами.
Первым по времени изобретения алгоритмом цифровой подписи был разработанный в 1977 году алгоритм RSA. Предложенный в 1984 году алгоритм Т. Эль-Гамаля позволял повысить стойкость подписи при ключе в 64 байта примерно в 1000 раз, но длина самой цифровой подписи увеличивалась в два раза и составляла 128 байт.
Алгоритм Эль-Гамаля послужил основой для разработки национального стандарта США DSA, введенного в 1991 году, и государственного стандарта РФ ГОСТ Р 34.10-94, введенного в действие с 1995 года. В алгоритме DSA удалось сократить длину цифровой подписи до 40 байт при сохранении ее стойкости на прежнем уровне. Дальнейшим развитием стандарта DSA стал стандарт США DSS.
Российский стандарт ГОСТ Р 34.10 схож со стандартом DSS, но предполагает более сложный алгоритм вычисления хэш-функции. Стандартом ГОСТ Р 34.10 определен следующий алгоритм вычисления цифровой подписи и аутентификации сообщения. Отправитель и получатель сообщения имеют в своем распоряжении некоторые открытые атрибуты создания и проверки цифровой подписи: начальный вектор хэширования Н и параметры р, g и а. Параметры вычисляются в соответствии с процедурой ГОСТ. Отправитель выбирает свой секретный ключ х и вычисляет открытый ключ у = ах (mod р). Открытый ключ у отсылается получателю. Секретный ключ выбирается из интервала 0 < х < 2256. Число k генерируется в процессе получения подписи сообщения, является секретным и должно быть уничтожено после выработки подписи. Упрощенный алгоритм процедуры выработки подписи включат следующие шаги.
1. Вычисление хэш-функции h (М) от сообщения М.
2. Получение целого числа k, 0 < k < g.
3. Вычисление значений r = ak (mod р) и r' = r (mod g).
Если r' = 0, перейти к шагу 2.
4. Вычисление значения s = (xr'+kh (M)) (mod g).
Если s = 0, то переход к шагу 2, иначе конец работы алгоритма.
Цифровой подписью сообщения М является вектор < r' >256 в || < s >256, который состоит из двух двоичных слов по 256 бит каждое, т. е. длина цифровой подписи составляет 512 бит.
Для проверки подписи (верификации сообщения) получатель сообщения выполняет следующие шаги.
1. Проверка условий: o<s<g и o<r'<g.
Если хотя бы одно условие не выполнено, то подпись считается недействительной.
2. Определяется хэш-функция h (М1) от полученного сообщения М1.
3. Вычисляется значение v = (h (М1))g-2 (mod g).
4. Вычисляются значения z1 = sv (mod g), z2 = (g-r')v (mod g).
5. Вычисление значения u = (azl yz2 (mod p)) (mod g).
6. Проверка условия: r' = u.
Если условие выполнено, то получатель считает, что полученное сообщение подписано отправителем, от которого был получен ключ у. Кроме того, получатель считает, что в процессе передачи целостность сообщения не нарушена. В противном случае подпись считается недействительной и сообщение отвергается.
Имея открытые атрибуты цифровой подписи и тексты открытых сообщений, определить секретный ключ х можно только путем полного перебора. Причем при длине цифровой подписи 40 байт стандарт DSA гарантирует число комбинаций ключа 1021. Для получения ключа перебором потребуется 30 лет непрерывной работы 1000 компьютеров производительностью 1 млрд. операций в секунду.
Использование цифровой подписи для аутентификации коротких сообщений, подтверждающих прием информационных сообщений, существенно увеличивает длину служебного подтверждающего сообщения. Для подписи служебного сообщения может быть использована подпись полученного информационного сообщения, модифицированная по определенному алгоритму. Например, выбраны разряды по маске. Если в сети реализован режим передачи пакетов, то цифровая подпись передается в конце всего сообщения, а не с каждым пакетом. Иначе трафик в сети увеличится. Степень увеличения трафика будет зависеть от длины пакета. При длине информационной части пакета в 2048 бит использование цифровой подписи каждого пакета привело бы к возрастанию трафика примерно на 25%.
При организации электронной почты необходимо учитывать особенности подтверждения полученных сообщений. Получатель в момент передачи сообщения может быть не активным. Поэтому следует организовать отложенную проверку подлинности сообщения и передачу подтверждения.

11.7. Особенности защиты информации в базах данных

Базы данных рассматриваются как надежное хранилище структурированных данных, снабженное специальным механизмом для их эффективного использования в интересах пользователей (процессов). Таким механизмом является система управления базой данных (СУБД). Под системой управления базой данных понимаются программные или аппаратно-программные средства, реализующие функции управления данными, такие как: просмотр, сортировка, выборка, модификация, выполнение операций определения статистических характеристик и т. п. Базы данных размещаются:
* на компьютерной системе пользователя;
* на специально выделенной ЭВМ (сервере).
Как правило, на компьютерной системе пользователя размещаются личные или персональные базы данных, которые обслуживают процессы одного пользователя.
В вычислительных сетях базы данных размещаются на серверах. В локальных и корпоративных сетях, как правило, используются централизованные базы данных. Общедоступные глобальные сети имеют распределенные базы данных. В таких сетях серверы размещаются на различных объектах сети. В качестве серверов часто используются специализированные ЭВМ, приспособленные к хранению больших объемов данных, обеспечивающие сохранность и доступность информации, а также оперативность обработки поступающих запросов. В централизованных базах данных проще решаются проблемы защиты информации от преднамеренных угроз, поддержания актуальности и непротиворечивости данных. Достоинством распределенных баз данных, при условии дублирования данных, является их высокая защищенность от стихийных бедствий, аварий, сбоев технических средств, а также диверсий.
Защита информации в базах данных, в отличие от защиты данных в файлах, имеет и свои особенности:
* необходимость учета функционирования системы управления базой данных при выборе механизмов защиты;
* разграничение доступа к информации реализуется не на уровне файлов, а на уровне частей баз данных;
При создании средств защиты информации в базах данных необходимо учитывать взаимодействие этих средств не только с ОС, но и с СУБД. При этом возможно встраивание механизмов защиты в СУБД или использование их в виде отдельных компонент. Для большинства СУБД придание им дополнительных функций возможно только на этапе разработки СУБД. В эксплуатируемые системы управления базами данных дополнительные компоненты могут быть внесены путем расширения или модификации языка управления. Таким путем можно осуществлять наращивание возможностей, например, в СУБД CA-Clipper 5.O.
В современных базах данных довольно успешно решаются задачи разграничения доступа, поддержания физической целостности и логической сохранности данных. Алгоритмы разграничения доступа к записям и даже к полям записей в соответствии с полномочиями пользователя хорошо отработаны, и преодолеть эту защиту злоумышленник может лишь с помощью фальсификации полномочий или внедрения вредительских программ. Разграничение доступа к файлам баз данных и к частям баз данных осуществляется СУБД путем установления полномочий пользователей и контроля этих полномочий при допуске к объектам доступа.
Полномочия пользователей устанавливаются администратором СУБД. Обычно стандартным идентификатором пользователя является пароль, передаваемый в зашифрованном виде. В распределенных КС процесс подтверждения подлинности пользователя дополняется специальной процедурой взаимной аутентификации удаленных процессов. Базы данных, содержащих конфиденциальную информацию, хранятся на внешних запоминающих устройствах в зашифрованном виде.
Физическая целостность баз данных достигается путем использования отказоустойчивых устройств, построенных, например, по технологии RAID. Логическая сохранность данных означает невозможность нарушения структуры модели данных. Современные СУБД обеспечивают такую логическую целостность и непротиворечивость на этапе описания модели данных.
В базах данных, работающих с конфиденциальной информацией, необходимо дополнительно использовать криптографические средства закрытия информации. Для этой цели используется шифрование как с помощью единого ключа, так и с помощью индивидуальных ключей пользователей. Применение шифрования с индивидуальными ключами повышает надежность механизма разграничения доступа, но существенно усложняет управление.
Возможны два режима работы с зашифрованными базами данных. Наиболее простым является такой порядок работы с закрытыми данными, при котором для выполнения запроса необходимый файл или часть файла расшифровывается на внешнем носителе, с открытой информацией производятся необходимые действия, после чего информация на ВЗУ снова зашифровывается. Достоинством такого режима является независимость функционирования средств шифрования и СУБД, которые работают последовательно друг за другом. В то же время сбой или отказ в системе может привести к тому, что на ВЗУ часть базы данных останется записанной в открытом виде.
Второй режим предполагает возможность выполнения СУБД запросов пользователей без расшифрования информации на ВЗУ. Поиск необходимых файлов, записей, полей, групп полей не требует расшифрования. Расшифрование производится в ОП непосредственно перед выполнением конкретных действий с данными. Такой режим возможен, если процедуры шифрования встроены в СУБД. При этом достигается высокий уровень защиты от несанкционированного доступа, но реализация режима связана с усложнением СУБД. Придание СУБД возможности поддержки такого режима работы осуществляется, как правило, на этапе разработки СУБД.
При построении защиты баз данных необходимо учитывать ряд специфических угроз безопасности информации, связанных с концентрацией в базах данных большого количества разнообразной информации, а также с возможностью использования сложных запросов обработки данных. К таким угрозам относятся:
* инференция;
* агрегирование;
* комбинация разрешенных запросов для получения закрытых данных.
Под инференцией понимается получение конфиденциальной информации из сведений с меньшей степенью конфиденциальности путем умозаключений. Если учитывать, что в базах данных хранится информация, полученная из различных источников в разное время, отличающаяся степенью обобщенности, то аналитик может получить конфиденциальные сведения путем сравнения, дополнения и фильтрации данных, к которым он допущен. Кроме того, он обрабатывает информацию, полученную из открытых баз данных, средств массовой информации, а также использует просчеты лиц, определяющих степень важности и конфиденциальности отдельных явлений, процессов, фактов, полученных результатов. Такой способ получения конфиденциальных сведений, например, по материалам средств массовой информации, используется давно, и показал свою эффективность.
Близким к инференции является другой способ добывания конфиденциальных сведений - агрегирование. Под агрегированием понимается способ получения более важных сведений по сравнению с важностью тех отдельно взятых данных, на основе которых и получаются эти сведения. Так, сведения о деятельности одного отделения или филиала корпорации обладают определенным весом. Данные же за всю корпорацию имеют куда большую значимость.
Если инференция и агрегирование являются способами добывания информации, которые применяются не только в отношении баз данных, то способ специального комбинирования запросов используется только при работе с базами данных. Использование сложных, а также последовательности простых логически связанных запросов позволяет получать данные, к которым доступ пользователю закрыт. Такая возможность имеется, прежде всего, в базах данных, позволяющих получать статистические данные. При этом отдельные записи, поля, (индивидуальные данные) являются закрытыми. В результате запроса, в котором могут использоваться логические операции AND, OR, NOT, пользователь может получить такие величины как количество записей, сумма, максимальное или минимальное значение. Используя сложные перекрестные запросы и имеющуюся в его распоряжении дополнительную информацию об особенностях интересующей записи (поля), злоумышленник путем последовательной фильтрации записей может получить доступ к нужной записи (полю).
Противодействие подобным угрозам осуществляется следующими методами:
* блокировка ответа при неправильном числе запросов;
* искажение ответа путем округления и другой преднамеренной коррекции данных;
* разделение баз данных;
* случайный выбор записи для обработки;
* контекстно-ориентированная защита;
* контроль поступающих запросов.
Метод блокировки ответа при неправильном числе запросов предполагает отказ в выполнении запроса, если в нем содержится больше определенного числа совпадающих записей из предыдущих запросов. Таким образом, данный метод обеспечивает выполнение принципа минимальной взаимосвязи вопросов. Этот метод сложен в реализации, так как необходимо запоминать и сравнивать все предыдущие запросы.
Метод коррекции заключается в незначительном изменении точного ответа на запрос пользователя. Для того, чтобы сохранить приемлемую точность статистической информации, применяется так называемый свопинг данных. Сущность его заключается во взаимном обмене значений полей записи, в результате чего все статистики i-го порядка, включающие i атрибутов, оказываются защищенными для всех i, меньших или равных некоторому числу. Если злоумышленник сможет выявить некоторые данные, то он не сможет определить, к какой конкретно записи они относятся.
Применяется также метод разделения баз данных на группы. В каждую группу может быть включено не более определенного числа записей. Запросы разрешены к любому множеству групп, но запрещаются к подмножеству записей из одной группы. Применение этого метода ограничивает возможности выделения данных злоумышленником на уровне не ниже группы записей. Метод разделения баз данных не нашел широкого применения из-за сложности получения статистических данных, обновления и реструктуризации данных.
Эффективным методом противодействия исследованию баз данных является метод случайного выбора записей для статистической обработки. Такая организация выбора записей не позволяет злоумышленнику проследить множество запросов.
Сущность контекстно-ориентированной защиты заключается в назначении атрибутов доступа (чтение, вставка, удаление, обновление, управление и т. д.) элементам базы данных (записям, полям, группам полей) в зависимости от предыдущих запросов пользователя. Например, пусть пользователю доступны в отдельных запросах поля: «идентификационные номера» и «фамилии сотрудников», а также «идентификационные номера» и «размер заработной платы». Сопоставив ответы по этим запросам, пользователь может получить закрытую информацию о заработной плате конкретных работников. Для исключения такой возможности пользователю следует запретить доступ к полю «идентификатор сотрудника» во втором запросе, если он уже выполнил первый запрос.
Одним из наиболее эффективных методов защиты информации в базах данных является контроль поступающих запросов на наличие «подозрительных» запросов или комбинации запросов. Анализ подобных попыток позволяет выявить возможные каналы получения несанкционированного доступа к закрытым данным.

Контрольные вопросы
1. Назовите особенности защиты информации в РКС.
2. Каким образом обеспечивается защита информации в пользовательских подсистемах и специализированных коммуникационных КС?
3. Приведите основные особенности защиты информации в подсистемах распределенных КС.
4. В чем заключается сущность межсетевого экранирования?
5. Охарактеризуйте защиту информации в базах данных.















III. ПОСТРОЕНИЕ И ОРГАНИЗАЦИЯ ФУНКЦИОНИРОВАНИЯ КОМПЛЕКСНЫХ СИСТЕМ ЗАЩИТЫ ИНФОРМАЦИИ В КОМПЬЮТЕРНЫХ СИСТЕМАХ

ГЛАВА 12
Построение комплексных систем защиты информации

12.1. Концепция создания защищенных КС

При разработке и построении комплексной системы защиты информации в компьютерных системах необходимо придерживаться определенных методологических принципов проведения исследований, проектирования, производства, эксплуатации и развития таких систем. Системы защиты информации относятся к классу сложных систем и для их построения могут использоваться основные принципы построения сложных систем с учетом специфики решаемых задач:
* параллельная разработка КС и СЗИ;
* системный подход к построению защищенных КС;
* многоуровневая структура СЗИ;
* иерархическая система управления СЗИ;
* блочная архитектура защищенных КС; Ф возможность развития СЗИ;
* дружественный интерфейс защищенных КС с пользователями и обслуживающим персоналом.
Первый из приведенных принципов построения СЗИ требует проведения одновременной параллельной разработки КС и механизмов защиты. Только в этом случае возможно эффективно обеспечить реализацию всех остальных принципов. Причем в процессе разработки защищенных КС должен соблюдаться разумный компромисс между созданием встроенных неразделимых механизмов защиты и блочных унифицированных средств и процедур защиты. Только на этапе разработки КС можно полностью учесть взаимное влияние блоков и устройств собственно КС и механизмов защиты, добиться системности защиты оптимальным образом.
Принцип системности является одним из основных концептуальных и методологических принципов построения защищенных КС. Он предполагает:
* анализ всех возможных угроз безопасности информации;
* обеспечение защиты на всех жизненных циклах КС;
* защиту информации во всех звеньях КС;
* комплексное использование механизмов защиты.
Потенциальные угрозы выявляются в процессе создания и исследования модели угроз. В результате исследований должны быть получены данные о возможных угрозах безопасности информации, о степени их опасности и вероятности реализации. При построении СЗИ учитываются потенциальные угрозы, реализация которых может привести к существенному ущербу и вероятность таких событий не является очень близкой к нулю.
Защита ресурсов КС должна осуществляться на этапах разработки, производства, эксплуатации и модернизации, а также по всей технологической цепочке ввода, обработки, передачи, хранения и выдачи информации. Реализация этих принципов позволяет обеспечить создание СЗИ, в которой отсутствуют слабые звенья как на различных жизненных циклах КС, так и в любых элементах и режимах работы КС.
Механизмы защиты, которые используются при построении защищенных систем, должны быть взаимоувязаны по месту, времени и характеру действия. Комплексность предполагает также использование в оптимальном сочетании различных методов и средств защиты информации: технических, программных, криптографических, организационных и правовых. Любая, даже простая СЗИ является комплексной.
Система защиты информации должна иметь несколько уровней, перекрывающих друг друга, т. е. такие системы целесообразно строить по принципу построения матрешек. Чтобы добраться до закрытой информации, злоумышленнику необходимо «взломать» все уровни защиты (рис. 28).


Рис. 28. Многоуровневая КСЗИ

Например, для отдельного объекта КС можно выделить 6 уровней (рубежей) защиты:
1) охрана по периметру территории объекта;
2) охрана по периметру здания;
3) охрана помещения;
4) защита аппаратных средств;
5) защита программных средств;
6) защита информации.
Комплексные системы защиты информации всегда должны иметь централизованное управление. В распределенных КС управление защитой может осуществляться по иерархическому принципу. Централизация управления защитой информации объясняется необходимостью проведения единой политики в области безопасности информационных ресурсов в рамках предприятия, организации, корпорации, министерства. Для осуществления централизованного управления в СЗИ должны быть предусмотрены специальные средства дистанционного контроля, распределения ключей, разграничения доступа, изготовления атрибутов идентификации и другие.
Одним из важных принципов построения защищенных КС является использование блочной архитектуры. Применение данного принципа позволяет получить целый ряд преимуществ:
* упрощается разработка, отладка, контроль и верификация устройств (программ, алгоритмов);
* допускается параллельность разработки блоков;
* используются унифицированные стандартные блоки;
* упрощается модернизация систем;
* удобство и простота эксплуатации.
Основываясь на принципе блочной архитектуры защищенной КС, можно представить структуру идеальной защищенной системы. В такой системе имеется минимальное ядро защиты, отвечающее нижней границе защищенности систем определенного класса (например, ПЭВМ). Если в системе необходимо обеспечить более высокий уровень защиты, то это достигается за счет согласованного подключения аппаратных блоков или инсталляции дополнительных программных средств (аналог режима «Plug and Play» в ОС Windows 98).
В случае необходимости могут быть использованы более совершенные блоки КС, чтобы не допустить снижения эффективности применения системы по прямому назначению. Это объясняется потреблением части ресурсов КС вводимыми блоками защиты.
Стандартные входные и выходные интерфейсы блоков позволяют упростить процесс модернизации СЗИ, альтернативно использовать аппаратные или программные блоки. Здесь просматривается аналогия с семиуровневой моделью OSI.
При разработке сложной КС, например, вычислительной сети, необходимо предусматривать возможность ее развития в двух направлениях: увеличения числа пользователей и наращивания возможностей сети по мере совершенствования информационных технологий.
С этой целью при разработке КС предусматривается определенный запас ресурсов по сравнению с потребностями на момент разработки. Наибольший запас производительности необходимо предусмотреть для наиболее консервативной части сложных систем - каналов связи. Часть резерва ресурсов КС может быть востребована при развитии СЗИ. На практике резерв ресурсов, предусмотренный на этапе разработки, исчерпывается уже на момент полного ввода в эксплуатацию сложных систем. Поэтому при разработке КС предусматривается возможность модернизации системы. В этом смысле сложные системы должны быть развивающимися или открытыми. Термин открытости в этой трактовке относится и к защищенным КС. Причем механизмы защиты, постоянно совершенствуясь, вызывают необходимость наращивания ресурсов КС. Новые возможности, режимы КС, а также появление новых угроз в свою очередь стимулируют развитие новых механизмов защиты. Важное место в процессе создания открытых систем играют международные стандарты в области взаимодействия устройств, подсистем. Они позволяют использовать подсистемы различных типов, имеющих стандартные интерфейсы взаимодействия.
Комплексная система защиты информации должна быть дружественной по отношению к пользователям и обслуживающему персоналу. Она должна быть максимально автоматизирована и не должна требовать от пользователя выполнять значительный объем действий, связанных с СЗИ. Комплексная СЗИ не должна создавать ограничений в выполнении пользователем своих функциональных обязанностей. В СЗИ необходимо предусмотреть меры снятия защиты с отказавших устройств для восстановления их работоспособности.

12.2. Этапы создания комплексной системы защиты информации

Система защиты информации должна создаваться совместно с создаваемой компьютерной системой. При построении системы защиты могут использоваться существующие средства защиты, или же они разрабатываются специально для конкретной КС. В зависимости от особенностей компьютерной системы, условий ее эксплуатации и требований к защите информации процесс создания КСЗИ может не содержать отдельных этапов, или содержание их может несколько отличаться от общепринятых норм при разработке сложных аппаратно-программных систем. Но обычно разработка таких систем включает следующие этапы:
* разработка технического задания;
* эскизное проектирование;
* техническое проектирование;
* рабочее проектирование;
* производство опытного образца.
Одним из основных этапов разработки КСЗИ является этап разработки технического задания. Именно на этом этапе решаются практически все специфические задачи, характерные именно для разработки КСЗИ.
Процесс разработки систем, заканчивающийся выработкой технического задания, называют научно-исследовательской разработкой, а остальную часть работы по созданию сложной системы называют опытно-конструкторской разработкой. Опытно-конструкторская разработка аппаратно-программных средств ведется с применением систем автоматизации проектирования, алгоритмы проектирования хорошо изучены и отработаны. Поэтому особый интерес представляет рассмотрение процесса научно-исследовательского проектирования.

12.3. Научно-исследовательская разработка КСЗИ

Целью этого этапа является разработка технического задания на проектирование КСЗИ. Техническое задание содержит основные технические требования к разрабатываемой КСЗИ, а также согласованные взаимные обязательства заказчика и исполнителя разработки. Технические требования определяют значения основных технических характеристик, выполняемые функции, режимы работы, взаимодействие с внешними системами и т. д.
Аппаратные средства оцениваются следующими характеристиками: быстродействие, производительность, емкость запоминающих устройств, разрядность, стоимость, характеристики надежности и др. Программные средства характеризуются требуемым объемом оперативной и внешней памяти, системой программирования, в которой разработаны эти средства, совместимостью с ОС и другими программными средствами, временем выполнения, стоимостью и т. д.
Получение значений этих характеристик, а также состава выполняемых функций и режимов работы средств защиты, порядка их использования и взаимодействия с внешними системами составляют основное содержание этапа научно-исследовательской разработки. Для проведения исследований на этом этапе заказчик может привлекать исполнителя или научно-исследовательское учреждение, либо организует совместную их работу.
Научно-исследовательская разработка начинается с анализа угроз безопасности информации, анализа защищаемой КС и анализа конфиденциальности и важности информации в КС (рис. 29).


Рис. 29. Последовательность и содержание
научно-исследовательской разработки КСЗИ

Прежде всего производится анализ конфиденциальности и важности информации, которая должна обрабатываться, храниться и передаваться в КС. На основе анализа делается вывод о целесообразности создания КСЗИ. Если информация не является конфиденциальной и легко может быть восстановлена, то создавать КСЗИ нет необходимости. Не имеет смысла также создавать КСЗИ в КС, если потеря целостности и конфиденциальности информации связана с незначительными потерями.
В этих случаях достаточно использовать штатные средства КС и, возможно, страхование от утраты информации.
При анализе информации определяются потоки конфиденциальной информации, элементы КС, в которых она обрабатывается и хранится. На этом этапе рассматриваются также вопросы разграничения доступа к информации отдельных пользователей и целых сегментов КС. На основе анализа информации определяются требования к ее защищенности. Требования задаются путем присвоения определенного грифа конфиденциальности, установления правил разграничения доступа.
Очень важная исходная информация для построения КСЗИ получается в результате анализа защищаемой КС. Так как КСЗИ является подсистемой КС, то взаимодействие системы защиты с КС можно определить как внутреннее, а взаимодействие с внешней средой - как внешнее (рис. 30).



Рис. 30. Схема взаимодействия КСЗИ

Внутренние условия взаимодействия определяются архитектурой КС. При построении КСЗИ учитываются:
* географическое положение КС;
* тип КС (распределенная или сосредоточенная);
* структуры КС (техническая, программная, информационная и т. д.);
* производительность и надежность элементов КС; 218
* типы используемых аппаратных и программных средств и режимы их работы;
* угрозы безопасности информации, которые порождаются внутри КС (отказы аппаратных и программных средств, алгоритмические ошибки и т. п.).
Учитываются следующие внешние условия:
* взаимодействие с внешними системами;
* случайные и преднамеренные угрозы.
Анализ угроз безопасности является одним из обязательных условий построения КСЗИ. По результатам проведенного анализа строится модель угроз безопасности информации в КС. Модель угроз безопасности информации в КС содержит систематизированные данные о случайных и преднамеренных угрозах безопасности информации в конкретной КС. Систематизация данных модели предполагает наличие сведений обо всех возможных угрозах, их опасности, временных рамках действия, вероятности реализации. Часто модель угроз рассматривается как композиция модели злоумышленника и модели случайных угроз. Модели представляются в виде таблиц, графов или на вербальном уровне. При построении модели злоумышленника используются два подхода:
1) модель ориентируется только на высококвалифицированного злоумышленника-профессионала, оснащенного всем необходимым и имеющего легальный доступ на всех рубежах защиты;
2) модель учитывает квалификацию злоумышленника, его оснащенность (возможности) и официальный статус в КС.
Первый подход проще реализуется и позволяет определить верхнюю границу преднамеренных угроз безопасности информации.
Второй подход отличается гибкостью и позволяет учитывать особенности КС в полной мере. Градация злоумышленников по их квалификации может быть различной. Например, может быть выделено три класса злоумышленников:
1) высококвалифицированный злоумышленник-профессионал;
2) квалифицированный злоумышленник-непрофессионал;
3) неквалифицированный злоумышленник-непрофессионал. Класс злоумышленника, его оснащенность и статус на объекте
КС определяют возможности злоумышленника по несанкционированному доступу к ресурсам КС.
Угрозы, связанные с непреднамеренными действиями, хорошо изучены, и большая часть их может быть формализована. Сюда следует отнести угрозы безопасности, которые связаны с конечной надежностью технических систем. Угрозы, порождаемые стихией или человеком, формализовать сложнее. Но с другой стороны, по ним накоплен большой объем статистических данных. На основании этих данных можно прогнозировать проявление угроз этого класса.
Модель злоумышленника и модель случайных угроз позволяют получить полный спектр угроз и их характеристик. В совокупности с исходными данными, полученными в результате анализа информации, особенностей архитектуры проектируемой КС, модели угроз безопасности информации позволяют получить исходные данные для построения модели КСЗИ.

12.4. Моделирование КСЗИ

Оценка эффективности функционирования КСЗИ представляет собой сложную научно-техническую задачу. Комплексная СЗИ оценивается в процессе разработки КС, в период эксплуатации и при создании (модернизации) СЗИ для уже существующих КС. При разработке сложных систем распространенным методом проектирования является синтез с последующим анализом. Система синтезируется путем согласованного объединения блоков, устройств, подсистем и анализируется (оценивается) эффективность полученного решения. Из множества синтезированных систем выбирается лучшая по результатам анализа, который осуществляется с помощью моделирования.
Моделирование КСЗИ заключается в построении образа (модели) системы, с определенной точностью воспроизводящего процессы, происходящие в реальной системе [30]. Реализация модели позволяет получать и исследовать характеристики реальной системы.
Для оценки систем используются аналитические и имитационные модели. В аналитических моделях функционирование исследуемой системы записывается в виде математических или логических соотношений. Для этих целей используется мощный математический аппарат: алгебра, функциональный анализ, разностные уравнения, теория вероятностей, математическая статистика, теория множеств, теория массового обслуживания и т. д.

<< Пред. стр.

стр. 6
(общее количество: 9)

ОГЛАВЛЕНИЕ

След. стр. >>