<< Пред. стр.

стр. 10
(общее количество: 26)

ОГЛАВЛЕНИЕ

След. стр. >>


§ 103. Вывод основных законов электрического
тока в классической теории
электропроводности металлов

1. Закон Ома. Пусть в металлическом проводнике существует электрическое поле напряженностью Е = const. Co стороны поля заряд е испытывает действие силы F = eE и приобретает ускорение a = F/m = eE/m. Таким образом, во время свободного пробега электроны движутся равноускоренно, приобретая к концу свободного пробега скорость

тде бtс — среднее время между двумя последовательными соударениями электрона с ионами решетки.
Согласно теории Друде, в конце свободного пробега электрон, сталкиваясь с иона ми решетки, отдает им накопленную в поле энергию, поэтому скорость его упорядоченного движения становится равной нулю. Следовательно, средняя скорость направленного движения электрона
(103.1)

Классическая теория металлов не учитывает распределения электронов по скоростям, поэтому среднее время бtс свободного пробега определяется средней длиной свободного пробега бtс и средней скоростью движения электронов относительно кристаллической решетки проводника, равной бuс + бvс (бuс — средняя скорость теплового движения электронов). В § 102 было показано, что бvс ? бuс, поэтому

Подставив значение бtс в формулу (103.1), получим

Плотность тока в металлическом проводнике, по (96.1),

откуда видно, что плотность тока пропорциональна напряженности поля, т. е. получили закон Ома в дифференциальной форме (ср. с (98.4)). Коэффициент пропорциональности между j и E есть не что иное, как удельная проводимость материала
(103.2)
которая тем больше, чем больше концентрация свободных электронов и средняя длина их свободного пробега.
2. Закон Джоуля — Ленца. К концу свободного пробега электрон под действием поля приобретает дополнительную кинетическую энергию
(103.3)
При соударении электрона с ионом эта энергия полностью передается решетке и идет на увеличение внутренней энергии металла, т. е. на его нагревание.
За единицу времени электрон испытывает с узлами решетки в среднем бzс столкновений:
(103.4)

Если n — концентрация электронов, то в единицу времени происходит nбzс столкновений и решетке передается энергия
(103.5)
которая идет на нагревание проводника. Подставив (103.3) и (103.4) в (103.5), получим таким образом энергию, передаваемую решетке в единице объема проводника за единицу времени,
(103.6)
Величина w является удельной тепловой мощностью тока (см. § 99). Коэффициент пропорциональности между w и Е2 по (103.2) есть удельная проводимость g; следовательно, выражение (103.6) — закон Джоуля — Ленца в дифференциальной форме (ср. с (99.7)).
3. Закон Видемана — Франца. Металлы обладают как большой электропроводностью, так и высокой теплопроводностью. Это объясняется тем, что носителями тока и теплоты в металлах являются одни и те же частицы — свободные электроны, которые, перемещаясь в металле, переносят не только электрический заряд, но и присущую им энергию хаотического (теплового) движения, т. е. осуществляют перенос теплоты.
Видеманом и Францем в 1853 г. экспериментально установлен закон, согласно которому отношение теплопроводности (А) к удельной проводимости (у) для всех металлов при одной и той же температуре одинаково и увеличивается пропорционально термодинамической температуре:

где b — постоянная, не зависящая от рода металла.
Элементарная классическая теория электропроводности металлов позволила найти значение b: b = 3(k/e)2, где k — постоянная Больцмана. Это значение хорошо согласуется с опытными данными. Однако, как оказалось впоследствии, это согласие теоретического значения с опытным случайно. Лоренц, применив к электронному газу статистику Максвелла — Больцмана, учтя тем самым распределение электронов по скоростям, получил b = 2 (k/e)2, что привело к резкому расхождению теории с опытом.
Таким образом, классическая теория электропроводности металлов объяснила законы Ома и Джоуля — Ленца, а также дала качественное объяснение закона Видемана — Франца. Однако она помимо рассмотренных противоречий в законе Видемана — Франца столкнулась еще с рядом трудностей при объяснении различных опытных данных. Рассмотрим некоторые из них.
Температурная зависимость сопротивления. Из формулы удельной проводимости (103.2) следует, что сопротивление металлов, т. е. величина, обратно пропорциональная g, должна возрастать пропорционально ЦT (в (103.2) n и бlс) от температуры не зависят, а бuс » ЦT). Этот вывод электронной теории противоречит опытным данным, согласно которым R ˜ Т (см. § 98).
Оценка средней длины свободного пробега электронов в металлах. Чтобы по формуле (103.2) получить g, совпадающие с опытными значениями, надо принимать бlс значительно больше истинных, иными словами, предполагать, что электрон проходит без соударений с ионами решетки сотни междоузельных расстояний, что не согласуется с теорией Друде — Лоренца.
Теплоемкость металлов. Теплоемкость металла складывается из теплоемкости его кристаллической решетки и теплоемкости электронного газа. Поэтому атомная (т. е. рассчитанная на 1 моль) теплоемкость металла должна быть значительно большей, чем атомная теплоемкость диэлектриков, у которых нет свободных электронов. Согласно закону Дюлонга и Пти (см. § 73), теплоемкость одноатомного кристалла равна ЗR. Учтем, что теплоемкость одноатомного электронного газа равна 3/2R. Тогда атомная теплоемкость металлов должна быть близка к 4,5R. Однако опыт доказывает, что она равна 3R, т. е. для металлов, так же как и для диэлектриков, хорошо выполняется закон Дюлонга и Пти. Следовательно, наличие электронов проводимости практически не сказывается на значении теплоемкости, что не объясняется классической электронной теорией.
Указанные расхождения теории с опытом можно объяснить тем, что движение электронов в металлах подчиняется не законам классической механики, а законам квантовой механики и, следовательно, поведение электронов проводимости надо описывать не статистикой Максвелла — Больцмана, а квантовой статистикой. Поэтому объяснить затруднения элементарной классической теории электропроводности метал лов можно лишь квантовой теорией, которая будет рассмотрена в дальнейшем. Надо, однако, отметить, что классическая электронная теория не утратила своего значения и до настоящего времени, так как во многих случаях (например, при малой концентрации электронов проводимости и высокой температуре) она дает правильные качественные результаты и является по сравнению с квантовой теорией простой и наглядной.

§ 104. Работа выхода электронов из металла

Как показывает опыт, свободные электроны при обычных температурах практически не покидают металл. Следовательно, в поверхностном слое металла должно быть задерживающее электрическое поле, препятствующее выходу электронов из металла в окружающий вакуум. Работа, которую нужно затратить для удаления электрона из металла в вакуум, называется работой выхода. Укажем две вероятные причины появления работы выхода:
Если электрон по какой-то причине удаляется из металла, то в том месте, которое электрон покинул, возникает избыточный положительный заряд и электрон притягивается к индуцированному им самим положительному заряду.
Отдельные электроны, покидая металл, удаляются от него на расстояния порядка атомных и создают тем самым над поверхностью металла «электронное облако», плотность которого быстро убывает с расстоянием. Это облако вместе с наружным слоем положительных ионов решетки образует двойной электрический слой, поле которого подобно полю плоского конденсатора. Толщина этого слоя равна нескольким межатомным расстояниям (10-10 —10-9 м). Он не создает электрического поля во внешнем пространстве, но препятствует выходу свободных электронов из металла.
Таким образом, электрон при вылете из металла должен преодолеть задерживающее его электрическое поле двойного слоя. Разность потенциалов Dj в этом слое, называемая поверхностным скачком потенциала, определяется работой выхода (А) электрона из металла:

где е — заряд электрона. Так как вне двойного слоя электрическое поле отсутствует, то потенциал среды равен нулю, а внутри металла потенциал положителен и равен Dj. Потенциальная энергия свободного электрона внутри металла равна — eDj и является относительно вакуума отрицательной. Исходя из этого можно считать, что весь объем металла для электронов проводимости представляет потенциальную яму с плоским дном, глубина которой равна работе выхода А.
Работа выхода выражается в электрон-вольтах (эВ): 1 эВ равен работе, совершаемой силами поля при перемещении элементарного электрического заряда (заряда, равного заряду электрона) при прохождении им разности потенциалов в 1 В. Так как заряд электрона равен 1,6Ч10-19 Кл, то 1 эВ=1,6Ч10-19 Дж.
Работа выхода зависит от химической природы металлов и от чистоты их поверхности и колеблется в пределах нескольких электрон-вольт (например, у калия A = 2,2 эВ, у платины A = 6,3 эВ). Подобрав определенным образом покрытие поверхности, можно значительно уменьшить работу выхода. Например, если нанести на поверхность вольфрама (А = 4,5 эВ) слой оксида щелочно-земельного металла (Са, Sr, Ва), то работа выхода снижается до 2 эВ.







§ 105. Эмиссионные явления и их применение

Если сообщить электронам в металлах энергию, необходимую для преодоления работы выхода, то часть электронов может покинуть металл, в результате чего наблюдается явление испускания электронов, или электронной эмиссии. В зависимости от способа сообщения электронам энергии различают термоэлектронную, фотоэлектронную, вторичную электронную и автоэлектронную эмиссии.
1. Термоэлектронная эмиссия — это испускание электронов нагретыми металлами. Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям (по энергиям) некоторые электроны обладают энергией, достаточной для преодоления потенциального барьера на границе металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше работы выхода, растет и явление термоэлектронной эмиссии становится заметным.
Исследование закономерностей термоэлектронной эмиссии можно провести с по мощью простейшей двухэлектродной лампы — вакуумного диода, представляющего собой откачанный баллон, содержащий два электрода: катод К и анод А. В простейшем случае катодом служит нить из тугоплавкого металла (например, вольфрама), накаливаемая электрическим током. Анод чаще всего имеет форму металлического цилиндра, окружающего катод. Если диод включить в цепь, как это показано на рис. 152, то при накаливании катода и подаче на анод положительного напряжения (относительно катода) в анодной цепи диода возникает ток. Если поменять полярность батареи БЛ) то ток прекращается, как бы сильно катод ни накаливали. Следовательно, катод испускает отрицательные частицы — электроны.
Если поддерживать температуру накаленного катода постоянной и снять зависимость анодного тока Iа от анодного напряжения Uа — вольт-амперную характеристику (рис. 153), то оказывается, что она не является линейной, т. е. для вакуумного диода закон Ома не выполняется. Зависимость термоэлектронного тока / от анодного напряжения в области малых положительных значений U описывается законом трех вторых (установлен русским физиком С. А. Богуславским (1883—1923) и американским физиком И. Ленгмюром (1881—1957)):

где В — коэффициент, зависящий от формы и размеров электродов, а также их взаимного расположения.

Рис. 152

При увеличении анодного напряжения ток возрастает до некоторого максимального значения IM, называемого током насыщения. Это означает, что почти все электроны, покидающие катод, достигают анода, поэтому дальнейшее увеличение напряженности поля не может привести к увеличению термоэлектронного тока. Следовательно, плотность тока насыщения характеризует эмиссионную способность материала катода.
Плотность тока насыщения определяется формулой Ричардсона — Дешмана, выведенной теоретически на основе квантовой статистики:

где А — работа выхода электронов из катода, Т -— термодинамическая температура, С — постоянная, теоретически одинаковая для всех металлов (это не подтверждается экспериментом, что, по-видимому, объясняется поверхностными эффектами). Уменьшение работы выхода приводит к резкому увеличению плотности тока насыщения. Поэтому применяются оксидные катоды (например, никель, покрытый оксидом щелочноземельного металла), работа выхода которых равна 1—1,5 эВ.
На рис. 153 представлены вольт-амперные характеристики для двух температур катода: T1 и T2 причем Т2 > Т1. С повышением температуры катода испускание электронов с катода интенсивнее, при этом увеличивается и ток насыщения. При Uа=0 наблюдается анодный ток, т. е. некоторые электроны, эмиттируемые катодом, обладают энергией, достаточной для преодоления работы выхода и достижения анода без приложения электрического поля.



Рис. 153

Явление термоэлектронной эмиссии используется в приборах, в которых необходимо получить поток электронов в вакууме, например в электронных лампах, рентгеновских трубках, электронных микроскопах и т. д. Электронные лампы широко применяются в электро- и радиотехнике, автоматике и телемеханике для выпрямления переменных токов, усиления электрических сигналов и переменных токов, генерирования электромагнитных колебаний и т. д. В зависимости от назначения в лампах используются дополнительные управляющие электроды.
Фотоэлектронная эмиссия — это эмиссия электронов из металла под действием света, а также коротковолнового электромагнитного излучения (например, рентгеновcкого). Основные закономерности этого явления будут разобраны при рассмотрении фотоэлектрического эффекта.
Вторичная электронная эмиссия — это испускание электронов поверхностью металлов, полупроводников или диэлектриков при бомбардировке их пучком электронов. Вторичный электронный поток состоит из электронов, отраженных поверхностью (упруго и неупруго отраженные электроны), и «истинно» вторичных электронов — электронов, выбитых из металла, полупроводника или диэлектрика первичными электронами.
Отношение числа вторичных электронов n2 к числу первичных n1, вызвавших эмиссию, называется коэффициентом вторичной электронной эмиссии:

Коэффициент d зависит от природы материала поверхности, энергии бомбардирующих частиц и их угла падения на поверхность. У полупроводников и диэлектриков d больше, чем у металлов. Это объясняется тем, что в металлах, где концентрация электронов проводимости велика, вторичные электроны, часто сталкиваясь с ними, теряют свою энергию и не могут выйти из металла. В полупроводниках и диэлектриках же из-за малой концентрации электронов проводимости столкновения вторичных электронов с ними происходят гораздо реже и вероятность выхода вторичных электронов из эмиттера возрастает в несколько раз.
Для примера на рис. 154 приведена качественная зависимость коэффициента вторичной электронной эмиссии d от энергии Е падающих электронов для KCl. С увеличением энергии электронов d возрастает, так как первичные электроны все глубже проникают в кристаллическую решетку и, следовательно, выбивают больше вторичных электронов. Однако при некоторой энергии первичных электронов d начинает уменьшаться. Это связано с тем, что с увеличением глубины проникновения первичных электронов вторичным все труднее вырваться на поверхность. Значение dmax для КCl достигает » 12 (для чистых металлов оно не превышает 2).

Рис. 154

Явление вторичной электронной эмиссии используется в фотоэлектронных умножителях (ФЭУ), применяемых для усиления слабых электрических токов. ФЭУ представляет собой вакуумную трубку с фотокатодом К и анодом А, между которыми расположено несколько электродов — эмиттеров (рис. 155). Электроны, вырванные из фотокатода под действием света, попадают на эмиттер Э1 пройдя ускоряющую разность потенциалов между К и Э1. Из эмиттера Э1 выбивается d электронов. Усиленный таким образом электронный поток направляется на эмиттер Э2, и процесс умножения повторяется на всех последующих эмиттерах. Если ФЭУ содержит n эмиттеров, то на аноде А, называемом коллектором, получается усиленный в dn раз фотоэлектронный ток.

Рис. 155
4. Автоэлектронная эмиссия — это эмиссия электронов с поверхности металлов под действием сильного внешнего электрического поля. Эти явления можно наблюдать в откачанной трубке, конфигурация электродов которой (катод — острие, анод — внутренняя поверхность трубки) позволяет при напряжениях примерно 103 В получать электрические поля напряженностью примерно 107 В/м. При постепенном повышении напряжения уже при напряженности поля у поверхности катода примерно 105 ё 10б В/м возникает слабый ток, обусловленный электронами, испускаемыми катодом. Сила этого тока увеличивается с повышением напряжения на трубке. Токи возникают при холодном катоде, поэтому описанное явление называется также холодной эмиссией. Объяснение механизма этого явления возможно лишь на основе квантовой теории.

§ 106. Ионизация газов. Несамостоятельный
газовый разряд

Газы при не слишком высоких температурах и при давлениях, близких к атмосфер ному, являются хорошими изоляторами. Если поместить в сухой атмосферный воздух заряженный электрометр с хорошей изоляцией, то его заряд долго остается неизменным. Это объясняется тем, что газы при обычных условиях состоят из нейтральных атомов и молекул и не содержат свободных зарядов (электронов и ионов). Газ становится проводником электричества, когда некоторая часть его молекул ионизуется, т. е. произойдет расщепление нейтральных атомов и молекул на ионы и свободные электроны. Для этого газ надо подвергнуть действию какого-либо ионизатора (напри мер, поднеся к заряженному электрометру пламя свечи, наблюдаем спад его заряда; здесь электропроводность газа вызвана нагреванием).
При ионизации газов, таким образом, под действием какого-либо ионизатора происходит вырывание из электронной оболочки атома или молекулы одного или нескольких электронов, что приводит к образованию свободных электронов и положи тельных ионов. Электроны могут присоединяться к нейтральным молекулам и атомам, превращая их в отрицательные ионы. Следовательно, в ионизованном газе имеются положительные и отрицательные ионы и свободные электроны. Прохождение электрического тока через газы называется газовым разрядом.
Ионизация газов может происходить под действием различных ионизаторов: сильный нагрев (столкновения быстрых молекул становятся настолько сильными, что они разбиваются на ионы), короткое электромагнитное излучение (ультрафиолетовое, рентгеновское и g-излучения), корпускулярное излучение (потоки электронов, протонов, a-частиц) и т. д. Для того чтобы выбить из молекулы (атома) один электрон, необходимо затратить определенную энергию, называемую энергией ионизации, значения которой для атомов различных веществ лежат в пределах 4 ё 25 эВ.
Одновременно с процессом ионизации газа всегда идет и обратный процесс — процесс рекомбинации: положительные и отрицательные ионы, положительные ионы и электроны, встречаясь, воссоединяются между собой с образованием нейтральных атомов и молекул. Чем больше ионов возникает под действием ионизатора, тем интенсивнее идет и процесс рекомбинации.
Строго говоря, электропроводность газа нулю не равна никогда, так как в нем всегда имеются свободные заряды, образующиеся в результате действия на газы излучения радиоактивных веществ, имеющихся на поверхности Земли, а также космического излучения. Эта незначительная электропроводность воздуха (интенсивность ионизации под действием указанных факторов невелика) служит причиной утечки зарядов наэлектризованных тел даже при хорошей их изоляции.
Характер газового разряда определяется составом газа, его температурой и давлением, размерами, конфигурацией и материалом электродов, приложенным напряжением, плотностью тока.
Рассмотрим цепь, содержащую газовый промежуток (рис. 156), подвергающийся непрерывному, постоянному по интенсивности воздействию ионизатора.

Рис. 156

В результате действия ионизатора газ приобретает некоторую электропроводность и в цепи потечет ток, зависимость которого от приложенного напряжения дана на рис. 157.
На участке кривой ОА сила тока возрастает пропорционально напряжению, т. е. выполняется закон Ома. При дальнейшем увеличении напряжения закон Ома нарушается: рост силы тока замедляется (участок АВ) и наконец прекращается совсем (участок ВС). Это достигается в том случае, когда ионы и электроны, создаваемые внешним ионизатором за единицу времени, за это же время достигают электродов. В результате получаем ток насыщения (Iнас), значение которого определяется мощностью ионизатора. Ток насыщения, таким образом, является мерой ионизирующего действия ионизатора. Если в режиме ОС прекратить действие ионизатора, то прекращается и разряд. Разряды, существующие только под действием внешних ионизаторов, называются несамостоятельными. При дальнейшем увеличении напряжения между электродами сила тока вначале медленно (участок CD), а затем резко (участок DE) возрастает. Механизм этого явления будет рассмотрен в следующем параграфе.

Рис. 157

§ 107. Самостоятельный газовый разряд и его
типы

Разряд в газе, сохраняющийся после прекращения действия внешнего ионизатора, называется самостоятельным.
Рассмотрим условия возникновения самостоятельного разряда. Как уже указывалось в § 106, при больших напряжениях между электродами газового промежутка (см. рис. 156) ток сильно возрастает (участки CD и DE на рис. 157). При больших напряжениях возникающие под действием внешнего ионизатора электроны, сильно ускоренные электрическим полем, сталкиваясь с нейтральными молекулами газа, ионизируют их, в результате чего образуются вторичные электроны и положительные ионы (процесс 1 на рис. 158). Положительные ионы движутся к катоду, а электроны — к аноду. Вторичные электроны вновь ионизируют молекулы газа, и, следовательно, общее количество электронов и ионов будет возрастать по мере продвижения электронов к аноду лавинообразно. Это является причиной увеличения электрического тока на участке CD (см. рис. 157). Описанный процесс называется ударной ионизацией.
Однако ударная ионизация под действием электронов недостаточна для поддержания разряда при удалении внешнего ионизатора. Для этого необходимо, чтобы электронные лавины «воспроизводились», т. е. чтобы в газе под действием каких-то процессов возникали новые электроны. Такие процессы схематически показаны на рис. 158: 1) ускоренные полем положительные ионы, ударяясь о катод, выбивают из него электроны (процесс 2); 2) положительные ионы, сталкиваясь с молекулами газа, пере водят их в возбужденное состояние; переход таких молекул в нормальное состояние сопровождается испусканием фотона (процесс 3); 3) фотон, поглощенный нейтральной молекулой, ионизирует ее, происходит так называемый процесс фотонной ионизации молекул (процесс 4); 4) выбивание электронов из катода под действием фотонов (процесс 5).
Наконец, при значительных напряжениях между электродами газового промежутка наступает момент, когда положительные ионы, обладающие меньшей длиной свободного пробега, чем электроны, приобретают энергию, достаточную для ионизации молекул газа (процесс б), и к отрицательной пластине устремляются ионные лавины. Когда возникают кроме электронных лавин еще и ионные, сила тока растет уже практически без увеличения напряжения (участок DE на рис. 157).

Рис. 158

В результате описанных процессов (7—б) число ионов и электронов в объеме газа лавинообразно возрастает и разряд становится самостоятельным, т. е. сохраняется после прекращения действия внешнего ионизатора. Напряжение, при котором возникает самостоятельный разряд, называется напряжением пробоя.
В зависимости от давления газа, конфигурации электродов, параметров внешней цепи можно говорить о четырех типах самостоятельного разряда: тлеющем, искровом, дуговом и коронном.
1. Тлеющшй разряд возникает при низких давлениях. Если к электродам, впаянным в стеклянную трубку длиной 30—50 см, приложить постоянное напряжение в несколько сотен вольт, постепенно откачивая из трубки воздух, то при давлении » 5,3 ё 6,7 кПа возникает разряд в виде светящегося извилистого шнура красноватого цвета, идущего от катода к аноду. При дальнейшем понижении давления шнур утолщается, и при давлении » 13 Па разряд имеет вид, схематически изображенный на рис.
Непосредственно к катоду прилегает тонкий светящийся слой 1 — первое катодное свечение, или катодная пленка, затем следует темный слой 2 — катодное темное пространство, переходящее в дальнейшем в светящийся слой 3 — тлеющее свечение, имеющее резкую границу со стороны катода, постепенно исчезающую со стороны анода. Оно возникает из-за рекомбинации электронов с положительными ионами. С тлеющим свечением граничит темный промежуток 4 — фарадеево темное пространство, за которым следует столб ионизированного светящегося газа 5 — положительный столб. Положительный столб существенной роли в поддержании разряда не имеет. Например, при уменьшении расстояния между электродами трубки его длина сокращается, в то время как катодные части разряда по форме и величине остаются неизменными. В тлеющем разряде особое значение для его поддержания имеют только две его части: катодное темное пространство и тлеющее свечение. В катодном темном пространстве происходит сильное ускорение электронов и положительных ионов, выбивающих электроны с катода (вторичная эмиссия). В области тлеющего свечения же происходит ударная ионизация электронами молекул газа. Образующиеся при этом положительные ионы устремляются к катоду и выбивают из него новые электроны, которые, в свою очередь, опять ионизируют газ и т. д. Таким образом непрерывно поддерживается тлеющий разряд.
При дальнейшем откачивании трубки при давлении ж 1,3 Па свечение газа ослабевает и начинают светиться стенки трубки. Электроны, выбиваемые из катода положи тельными ионами, при таких разрежениях редко сталкиваются с молекулами газа и поэтому, ускоренные полем, ударяясь о стекло, вызывают его свечение, так называемую катодолюмннесценцню. Поток этих электронов исторически получил название катодных лучей. Если в катоде просверлить малые отверстия, то положительные ионы, бомбардирующие катод, пройдя через отверстия проникают в пространство за катодом и образуют резко ограниченный пучок, получивший название каваловых (или положительных) лучей, названных по знаку заряда, который они несут.
Тлеющий разряд широко используется в технике. Так как свечение положительного столба имеет характерный для каждого газа цвет, то его используют в газосветных трубках для светящихся надписей и реклам (например, неоновые газоразрядные трубки дают красное свечение, аргоновые — синевато-зеленое). В лампах дневного света, более экономичных, чем лампы накаливания, излучение тлеющего разряда, происходящее в парах ртути, поглощается нанесенным на внутреннюю поверхность трубки флуоресцирующим веществом (люминофором), начинающим под воздействием поглощенного излучения светиться. Спектр свечения при соответствующем подборе люминофоров близок к спектру солнечного излучения. Тлеющий разряд используется для катодного напыления металлов. Вещество катода в тлеющем разряде вследствие бомбардировки положительными ионами, сильно нагреваясь, переходит в парообразное состояние. Помещая вблизи катода различные предметы, их можно покрыть равномерным слоем металла.
2. Искровой разряд возникает при больших напряженностях электрического поля (» 3Ч10е В/м) в газе, находящемся под давлением порядка атмосферного. Искра имеет вад ярко светящегося тонкого канала, сложным образом изогнутого и разветвленного.
Объяснение искрового разряда дается на основе стримерной теории, согласно которой возникновению ярко светящегося канала искры предшествует появление слабосветящихся скоплений ионизованного газа — стримеров. Стримеры возникают не только в результате образования электронных лавин посредством ударной ионизации, но и в результате фотонной ионизации газа. Лавины, догоняя друг друга, образуют проводящие мостики из стримеров, по которым в следующие моменты времени и устремляются мощные потоки электронов, образующие каналы искрового разряда. Из-за выделения при рассмотренных процессах большого количества энергии газ в искровом промежутке нагревается до очень высокой температуры (примерно 104 К), что приводит к его свечению. Быстрый нагрев газа ведет к повышению давления и возникновению ударных волн, объясняющих звуковые эффекты при искровом раз ряде - характерное потрескивание в слабых разрядах и мощные раскаты грома в случае молнии, являющейся примером мощного искрового разряда между грозовым облаком и Землей или между двумя грозовыми облаками.
Искровой разряд используется для воспламенения горючей смеси в двигателях внутреннего сгорания и предохранения электрических линий передачи от перенапряжений (искровые разрядники). При малой длине разрядного промежутка искровой разряд вызывает разрушение (эрозию) поверхности металла, поэтому он применяется для электроискровой точной обработки металлов (резание, сверление). Его используют в спектральном анализе для регистрации заряженных частиц (искровые счетчики).
3. Дуговой разряд. Если после зажигания искрового разряда от мощного источника постепенно уменьшать расстояние между электродами, то разряд становится непрерывным — возникает дуговой разряд. При этом сила тока резко возрастает, достигая сотен ампер, а напряжение на разрядном промежутке падает до нескольких десятков вольт. Дуговой разряд можно получить от источника низкого напряжения минуя стадию искры. Для этого электроды (например, угольные) сближают до соприкосновения, они сильно раскаляются электрическим током, потом их разводят и получают электрическую дугу (именно так она была открыта В. В. Петровым). При атмосферном давлении температура катода приблизительно равна 3900 К. По мере горения
дуги угольный катод заостряется, а на аноде образуется углубление — кратер, являющийся наиболее горячим местом дуги.
По современным представлениям, дуговой разряд поддерживается за счет высокой температуры катода из-за интенсивной термоэлектронной эмиссии, а также термической ионизации молекул, обусловленной высокой температурой газа.
Дуговой разряд находит широкое применение для сварки и резки металлов, получения высококачественных сталей (дуговая печь) и освещения (прожекторы, проекционная аппаратура). Широко применяются также дуговые лампы с ртутными электродами в кварцевых баллонах, где дуговой разряд возникает в ртутном паре при откачанном воздухе. Дуга, возникающая в ртутном паре, является мощным источником ультрафиолетового излучения и используется в медицине (например, кварцевые лампы). Дуговой разряд при низких давлениях в парах ртути используется в ртутных выпрямителях для выпрямления переменного тока.
4. Коронный разряд — высоковольтный электрический разряд при высоком (напри мер, атмосферном) давлении в резко неоднородном поле вблизи электродов с большой кривизной поверхности (например, острия). Когда напряженность поля вблизи острия достигает 30 кВ/см, то вокруг него возникает свечение, имеющее вид короны, чем и вызвано название этого вида разряда.
В зависимости от знака коронирующего электрода различают отрицательную или положительную корону. В случае отрицательной короны рождение электронов, вызывающих ударную ионизацию молекул газа, происходит за счет эмиссии их из катода под действием положительных ионов, в случае положительной — вследствие ионизации газа вблизи анода. В естественных условиях корона возникает под влиянием атмосферного электричества у вершин мачт (на этом основано действие молниеотводов), деревьев [25 Это явление получило в древности название огней святого Эльма.]
. Вредное действие короны вокруг проводов высоковольтных линий передачи проявляется в возникновении вредных токов утечки. Для их снижения провода высоковольтных линий делаются толстыми. Коронный разряд, являясь прерывистым, становится также источником радиопомех.
Используется коронный разряд в электрофильтрах, применяемых для очистки промышленных газов от примесей. Газ, подвергаемый очистке, движется снизу вверх в вертикальном цилиндре, по оси которого расположена коронирующая проволока. Ионы, имеющиеся в большом количестве во внешней части короны, оседают на частицах примеси и увлекаются полем к внешнему некоронирующему электроду и на нем оседают. Коронный разряд применяется также при нанесении порошковых и лакокрасочных покрытий.

§ 108. Плазма и ее свойства

Плазмой называется сильно ионизованный газ, в котором концентрации положительных и отрицательных зарядов практически одинаковы. Различают высокотемпературную плазму, возникающую при сверхвысоких температурах, и газоразрядную плазму, возникающую при газовом разряде. Плазма характеризуется степенью ионизации а — отношением числа ионизованных частиц к полному их числу в единице объема плазмы. В зависимости от величины а говорят о слабо (а составляет доли процента), умеренно (а — несколько процентов) и полностью (а близко к 100%) ионизованной плазме.
Заряженные частицы (электроны, ионы) газоразрядной плазмы, находясь в ускоряющем электрическом поле, обладают различной средней кинетической энергией. Это означает, что температура Т, электронного газа одна, а ионного Ти — другая, причем Те > Ти. Несоответствие этих температур указывает на то, что газоразрядная плазма является неравновесной, поэтому она называется также неизотермнческой. Убыль числа заряженных частиц в процессе рекомбинации в газоразрядной плазме восполняется ударной ионизацией электронами, ускоренными электрическим полем. Прекращение действия электрического поля приводит к исчезновению газоразрядной плазмы.
Высокотемпературная плазма является равновесной, или изотермической, т. е. при определенной температуре убыль числа заряженных частиц восполняется в результате термической ионизации. В такой плазме соблюдается равенство средних кинетических энергий составляющих плазму различных частиц. В состоянии подобной плазмы находятся звезды, звездные атмосферы, Солнце. Их температура достигает десятков миллионов градусов.
Условием существования плазмы является некоторая минимальная плотность заряженных частиц, начиная с которой можно говорить о плазме как таковой. Эта плотность определяется в физике плазмы из неравенства L ? D, где L — линейный размер системы заряженных частиц, D — так называемый дебаевский радиус экранирования, представляющий собой то расстояние, на котором происходит экранирование кулоновского поля любого заряда плазмы.
Плазма обладает следующими основными свойствами: высокой степенью ионизации газа, в пределе — полной ионизацией; равенством нулю результирующего пространственного заряда (концентрация положительных и отрицательных частиц в плазме практически одинакова); большой электропроводностью, причем ток в плазме создается в основном электронами, как наиболее подвижными частицами; свечением; сильным взаимодействием с электрическим и магнитным полями; колебаниями электронов в плазме с большой частотой (» 108 Гц), вызывающими общее вибрационное состояние плазмы; «коллективным» — одновременным взаимодействием громадного числа частиц (в обычных газах частицы взаимодействуют друг с другом попарно). Эти свойства определяют качественное своеобразие плазмы, позволяющее считать ее осо бым, четвертым, состоянием вещества.
Изучение физических свойств плазмы позволяет, с одной стороны, решать многие проблемы астрофизики, поскольку в космическом пространстве плазма — наиболее распространенное состояние вещества, а с другой — открывает принципиальные возможности осуществления управляемого термоядерного синтеза. Основным объектом исследований по управляемому термоядерному синтезу является высокотемпературная плазма (» 108 К) из дейтерия и трития (см. § 268).
Низкотемпературная плазма (< 10s К) применяется в газовых лазерах, в термоэлектронных преобразователях и магнитогидродинамических генераторах (МГД-генераторах) — установках для непосредственного преобразования тепловой энергии в электрическую, в плазменных ракетных двигателях, весьма перспективных для длительных космических полетов.
Низкотемпературная плазма, получаемая в плазмотронах, используется для резки и сварки металлов, для получения некоторых химических соединений (например, галогенидов инертных газов), которые не удается получить другими способами, и т. д.









Задачи

13.1. Концентрация электронов проводимости в металле равна 2,5Ч1022 с-3. Определить среднюю скорость их упорядоченного движения при плотности тока 1 А/мм2. [0,25 мм/с]

13.2. Работа выхода электрона из вольфрама составляет 4,5 эВ. Определить, во сколько раз увеличится плотность тока насыщения при повышении температуры от 2000 до 2500 К. [В 290 раз]

13.3. Работа выхода электрона из металла равна 2.5 эВ. Определить скорость вылетающего из металла электрона, если он обладает энергией 10-18 Дж. [1,15 Мм/с]

13.4. Воздух между пластинами плоского конденсатора ионизируется рентгеновским излучением. Сила тока, текущего между пластинами, 10 мкА. Площадь каждой пластины конденсатора равна 200 см2, расстояние между ними 1 см, разность потенциалов 100 В. Подвижность положительных ионов b+ = 1,4 см2/(ВЧс) и отрицательных b_ = 1,9 см3/(ВЧс); заряд каждого иона равен элементарному заряду. Определить концентрацию пар ионов между пластинами, если ток далек от насыщения. [9,5Ч1014 м-3]

13.5. Ток насыщения при несамостоятельном разряде равен 9,6 пА. Определить число пар ионов, создаваемых в 1 с внешним ионизатором. [3Ч107]




















Глава 14
Магнитное поле

§ 109. Магнитное поле и его характеристики

Опыт показывает, что, подобно тому, как в пространстве, окружающем электрические заряды, возникает электростатическое поле, так и в пространстве, окружающем токи и постоянные магниты, возникает силовое поле, называемое магнитным. Наличие магнитного поля обнаруживается по силовому действию на внесенные в него проводники с током или постоянные магниты. Название «магнитное поле» связывают с ориентацией магнитной стрелки под действием поля, создаваемого током (это явление впервые обнаружено датским физиком X. Эрстедом (1777—1851)).
Электрическое поле действует как на неподвижные, так и на движущиеся в нем электрические заряды. Важнейшая особенность магнитного поля состоит в том, что оно действует только на движущиеся в этом поле электрические заряды. Опыт показывает, что характер воздействия магнитного поля на ток различен в зависимости от формы проводника, по которому течет ток, от расположения проводника и от направления тока. Следовательно, чтобы охарактеризовать магнитное поле, надо рассмотреть его действие на определенный ток.
Подобно тому, как при исследовании электростатического поля использовались точечные заряды, при исследовании магнитного поля используется замкнутый плоский контур с током (рамка с током), линейные размеры которого малы по сравнению с расстоянием до токов, образующих магнитное поле. Ориентация контура в пространстве определяется направлением нормали к контуру. Направление нормали определяется правилом правого винта: за положительное направление нормали принимается направление поступательного движения винта, головка которого вращается в направлении тока, текущего в рамке (рис. 160).

Рис. 160

Опыты показывают, что магнитное поле оказывает на рамку с током ориентирующее действие, поворачивая ее определенным образом. Этот результат используется для выбора направления магнитного поля. За направление магнитного поля в данной точке принимается направление, вдоль которого располагается положительная нормаль к рамке (рис. 161). За направление магнитного поля может быть также принято направление, совпадающее с направлением силы, которая действует на северный полюс магнитной стрелки, помещенной в данную точку. Так как оба полюса магнитной стрелки лежат в близких точках поля, то силы, действующие на оба полюса, равны друг другу. Следовательно, на магнитную стрелку действует пара сил, поворачивающая ее так, чтобы ось стрелки, соединяющая южный полюс с северным, совпадала с направлением поля.

Рис. 161

Рамкой с током можно воспользоваться также и для количественного описания магнитного поля. Так как рамка с током испытывает ориентирующее действие поля, то на нее в магнитном поле действует пара сил. Вращающий момент сил зависит как от свойств поля в данной точке, так и от свойств рамки и определяется формулой
(109.1)
где pm — вектор магнитного момента рамки с током (В — вектор магнитной индукции, количественная характеристика магнитного поля). Для плоского контура с током I
(109.2)
где S — площадь поверхности контура (рамки), n — единичный вектор нормали к поверхности рамки. Направление pm совпадает, таким образом, с направлением положительной нормали.
Если в данную точку магнитного поля помещать рамки с различными магнитными моментами, то на них действуют различные вращающие моменты, однако отношение Mmax/pm (Мmax — максимальный вращающий момент) для всех контуров одно и то же и поэтому может служить характеристикой магнитного поля, называемой магнитной индукцией:

Магнитная индукция в данной точке однородного магнитного поля определяется максимальным вращающим моментом, действующим на рамку с магнитным моментом, равным единице, когда нормаль к рамке перпендикулярна направлению поля. Следует отметить, что вектор В может быть выведен также из закона Ампера (см. § 111) и из выражения для силы Лоренца (см. § 114).
Так как магнитное поле является силовым, то его, по аналогии с электрическим, изображают с помощью линий магнитной индукции — линий, касательные к которым в каждой точке совпадают с направлением вектора В. Их направление задается правилом правого винта: головка винта, ввинчиваемого по направлению тока, вращается в направлении линий магнитной индукции.
Линии магнитной индукции можно «проявить» с помощью железных опилок, намагничивающихся в исследуемом поле и ведущих себя подобно маленьким магнитным стрелкам. На рис. 162, а показаны линии магнитной индукции поля кругового тока, на рис. 162, б — линии магнитной индукции поля соленоида (соленоид — равномерно намотанная на цилиндрическую поверхность проволочная спираль, по которой течет электрический ток).

Рис. 162

Линии магнитной индукции всегда замкнуты и охватывают проводники с током. Этим они отличаются от линий напряженности электростатического поля, которые являются разомкнутыми (начинаются на положительных зарядах и кончаются на отрицательных (см. § 79)).
На рис. 163 изображены линяй магнитной индукции полосового магнита; они выходят из северного полюса и входят в южный. Вначале казалось, что здесь наблюдается полная аналогия с линиями напряженности электростатического поля и полюсы магнитов играют роль магнитных «зарядов» (магнитных моиополей).

Рис. 163

Опыты показали, что, разрезая магнит на части, его полюсы разделить нельзя, т. е. в отличие от электрических зарядов свободные магнитные «заряды» не существуют, поэтому линии магнитной индукции не могут обрываться на полюсах. В дальнейшем было установлено, что внутри полосовых магнитов имеется магнитное поле, аналогичное полю внутри соленоида, н линии магнитной индукции этого магнитного поля являются продолжением линий магнитной индукции вне магнита. Таким образом, линии магнитной индукции магнитного поля постоянных магнитов являются также замкнутыми.
До сих пор мы рассматривали макроскопические токи, текущие в проводниках Однако, согласно предположению французского физика А. Ампера (1775—1836), в любом теле существуют микроскопические токи, обусловленные движением электронов в атомах и молекулах. Эти микроскопические молекулярные токи создают свое магнитное поле и могут поворачиваться в магнитных полях макротоков. Например, если вблизи какого-то тела поместить проводник с током (макроток), то под действием его магнитного поля микротоки во всех атомах определенным образом ориентируются, создавая в теле дополнительное магнитное поле. Вектор магнитной индукции В характеризует результирующее магнитное поле, создаваемое всеми мокро- и микротоками, т. е. при одном и том же токе и прочих равных условиях вектор В в различных средах будет иметь разные значения.
Магнитное поле макротоков описывается вектором напряженности Н. Для однородной изотропной среды вектор магнитной индукции связан с вектором напряженности следующим соотношением:
(109.3)
где m0 — магнитная постоянная, m — безразмерная величина — магнитная проницаемость среды, показывающая, во сколько раз магнитное поле макротоков Н усиливается за счет поля микротоков среды.
Сравнивая векторные характеристики электростатического (Е и D) и магнитного (В и Н) полей, укажем, что аналогом вектора напряженности электростатического поля Е является вектор магнитной индукции В, так как векторы Е и В определяют силовые действия этих полей и зависят от свойств среды. Аналогом вектора электрического смещения D является вектор напряженности Н магнитного поля.

§ 110. Закон Био - Савара - Лапласа и его
применение к расчету магнитного поля

Магнитное поле постоянных токов различной формы изучалось французскими учеными Ж. Био (1774—1862) и Ф. Саваром (1791—1841). Результаты этих опытов были обобщены выдающимся французским математиком и физиком П. Лапласом.
Закон Био — Савара — Лапласа для проводника с током I, элемент dl которого создает в некоторой точке А (рис. 164) индукцию поля dB, записывается в виде
(110.1)
где dl — вектор, по модулю равный длине dl элемента проводника и совпадающий по направлению с током, г — радиус-вектор, проведенный из элемента d/ проводника в точку А поля, r — модуль радиуса-вектора г. Направление dB перпендикулярно dl и г, т. е. перпендикулярно плоскости, в которой они лежат, и совпадает с касательной к линии магнитной индукции. Это направление может быть найдено по правилу нахождения линий магнитной индукции (правилу правого винта): направление вращения головки винта дает направление dB, если поступательное движение винта соответствует направлению тока в элементе.

Рис. 164

Модуль вектора dB определяется выражением
(110.2)
где a — угол между векторами dl и г.
Для магнитного поля, как и для электрического, справедлив принцип суперпозиции: магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций складываемых полей, создаваемых каждым током или движущимся зарядом в отдельности:
(110.3)
Расчет характеристик магнитного поля (В и Н) по приведенным формулам в общем случае сложен. Однако если распределение тока имеет определенную сим метрию, то применение закона Био — Савара — Лапласа совместно с принципом суперпозиции позволяет просто рассчитать конкретные поля. Рассмотрим два примера.
1.Магнитное поле прямого тока — тока, текущего по тонкому прямому проводу бесконечной длины (рис. 165). В произвольной точке А, удаленной от оси проводника на расстояние R, векторы dB от всех элементов тока имеют одинаковое направление, перпендикулярное плоскости чертежа («к нам»). Поэтому сложение векторов dB можно заменить сложением их модулей. В качестве постоянной интегрирования выберем угол а (угол между векторами dl и г), выразив через него все остальные величины.

Рис. 165

Из рис. 165 следует, что

(радиус дуги CD вследствие малости dl равен r, и угол FDC по этой же причине можно считать прямым). Подставив эти выражения в (110.2), получим, что магнитная индукция, создаваемая одним элементом проводника, равна
(110.4)
Так как угол a для всех элементов прямого тока изменяется в пределах от 0 до p, то, согласно (110.3) и (110.4),

Следовательно, магнитная индукция поля прямого тока
(110.5)
2. Магнитное поле в центре кругового проводника с током (рис. 166). Как следует из рисунка, все элементы кругового проводника с током создают в центре магнитные поля одинакового направления — вдоль нормали от витка. Поэтому сложение век торов dB можно заменить сложением их модулей.


Рис. 166

Так как все элементы проводника перпендикулярны радиусу-вектору (sina = l) и расстояние всех элементов проводника до центра кругового тока одинаково и равно R, то, согласно (110.2),

Следовательно, магнитная индукция поля в центре кругового проводника с током


§ 111. Закон Ампера.
Взаимодействие параллельных токов

Магнитное поле (см. § 109) оказывает на рамку с током ориентирующее действие. Следовательно, вращающий момент, испытываемый рамкой, есть результат действия сил на отдельные ее элементы. Обобщая результаты исследования действия мгнитного поля на различные проводники с током, Ампер установил, что сила dF, с которой магнитное поле действует на элемент проводника dl с током, находящегося в магнит ном поле, равна
(111.1)
где dl — вектор, по модулю равный dl и совпадающий по направлению с током, В — вектор магнитной индукции.
Направление вектора dF может быть найдено, согласно (111.1), по общим правилам векторного произведения, откуда следует правело левой рут: если ладонь левой руки расположить так, чтобы в нее входил вектор В, а четыре вытянутых пальца расположить по направлению тока в проводнике, то отогнутый большой палец покажет направление силы, действующей на ток.
Модуль силы Ампера (см. (111.1)) вычисляется по формуле
(111.2)
где a — угол между векторами dl и В.
Закон Ампера применяется для определения силы взаимодействия двух токов. Рассмотрим два бесконечных прямолинейных параллельных тока I1 и I2 (направления токов указаны на рис. 167), расстояние между которыми равно R. Каждый из проводников создает магнитное поле, которое действует по закону Ампера на другой проводник с током. Рассмотрим, с какой силой действует магнитное поле тока I1 на элемент dl второго проводника с током I2. Ток I1 создает вокруг себя магнитное поле, линии магнитной индукции которого представляют собой концентрические окружности. На правление вектора B1 определяется правилом правого винта, его модуль по формуле (110.5) равен


Рис. 167

Направление силы dF1, с которой поле B1 действует на участок dl второго тока, определяется по правилу левой руки и указано на рисунке. Модуль силы, согласно (111.2), с учетом того, что угол а между элементами тока I2 и вектором B1 прямой, равен

подставляя значение для B1 получим
(111.3)
Рассуждая аналогично, можно показать, что сила dF2, с которой магнитное поле тока I2 действует на элемент dl первого проводника с током I1 направлена в противоположную сторону и по модулю равна
(111.4)
Сравнение выражений (111.3) и (111.4) показывает, что

т. е. два параллельных тока одинакового направления притягиваются друг к другу с силой
(111.5)
Если токи имеют противоположные направления, то, используя правило левой руки, можно показать, что между ними действует сила отталкивания, определяемая формулой (111.5).

§ 112. Магнитная постоянная.
Единицы магнитной индукции и
напряженности магнитного поля

Если два параллельных проводника с током находятся в вакууме (m = 1), то сила взаимодействия на единицу длины проводника, согласно (111.5), равна
(112.1)
Для нахождения числового значения m0 воспользуемся определением ампера, согласно которому Н/м при I1 = I2 = 1 А и R = 1 м. Подставив это значение в формулу (112.1), получим

m0 = 4pЧ10-7 Н/А2 = 4pЧ10-7 Гн/м,

где генри (Гн) — единица индуктивности (см. § 126).
Закон Ампера позволяет определить единицу магнитной индукции В. Предположим, что элемент проводника dl с током I перпендикулярен направлению магнитного поля. Тогда закон Ампера (см. (111.2)) запишется в виде dF = IBdl, откуда

Единица магнитной индукции — тесла (Тл): 1 Тл — магнитная индукция такого однородного магнитного поля, которое действует с силой 1 Н на каждый метр длины прямолинейного проводника, расположенного перпендикулярно направлению поля, если по этому проводнику проходит ток 1 А:
1 Тл = 1 Н/(А-м).
Так как m0 = 4pЧ10-7 Н/А2, а в случае вакуума (m = 1), согласно (109.3), B = m0H , то для данного случая

Единица напряженности магнитного поля — ампер на метр (А/м): 1 А/м — напряженность такого поля, магнитная индукция которого в вакууме равна 4pЧ10-7 Тл.

§ 113. Магнитное поле движущегося заряда

Каждый проводник с током создает в окружающем пространстве магнитное поле. Электрический же ток представляет собой упорядоченное движение электрических зарядов. Поэтому можно сказать, что любой движущийся в вакууме или среде заряд создает вокруг себя магнитное поле. В результате обобщения опытных данных был установлен закон, определяющий поле В точечного заряда Q, свободно движущегося с нерелятивистской скоростью v. Под свободным движением заряда понимается его движение с постоянной скоростью. Этот закон выражается формулой
(113.1)
где t— радиус-вектор, проведенный от заряда Q к точке наблюдения М (рис. 168). Согласно выражению (113.1), вектор В направлен перпендикулярно плоскости, в которой расположены векторы v и г, а именно: его направление совпадает с направлением поступательного движения правого винта при его вращении от v к г. Модуль магнитной индукции (113.1) вычисляется по формуле
(113.2)
где a — угол между векторами v и г.


Рис. 168

Сравнивая выражения (110.1) и (113.1), видим, что движущийся заряд по своим магнитным свойствам эквивалентен элементу тока:

Приведенные закономерности (113.1) и (113.2) справедливы лишь при малых скоростях (v ? c) движущихся зарядов, когда электрическое поле свободно движущегося заряда можно считать электростатическим, т. е. создаваемым неподвижным зарядом, находящимся в той точке, где в данный момент времени расположен движущийся заряд.
Формула (113.1) определяет магнитную индукцию положительного заряда, движущегося со скоростью v. Если движется отрицательный заряд, то Q надо заменить на — Q. Скорость v — относительная скорость, т. е. скорость относительно наблюдателя. Вектор В в рассматриваемой системе отсчета зависит как от времени, так и от положения точки М наблюдения. Поэтому следует подчеркнуть относительный характер магнитного поля движущегося заряда.
Впервые поле движущегося заряда удалось обнаружить американскому физику Г. Роуланду (1848—1901). Окончательно этот факт был установлен профессором Московского университета А. А. Эйхенвальдом (1863—1944), изучившим магнитное поле конвекционного тока, а также магнитное поле связанных зарядов поляризованного диэлектрика. Магнитное поле свободно движущихся зарядов было измерено академиком А. Ф. Иоффе, доказавшим эквивалентность, в смысле возбуждения магнитного поля, электронного пучка и тока проводимости.

§ 114. Действие магнитного поля на движущийся
заряд

Опыт показывает, что магнитное поле действует не только на проводники с током (см. § 111), но и на отдельные заряды, движущиеся в магнитном поле. Сила, действующая на электрический заряд Q, движущийся в магнитном поле со скоростью v, называется силой Лоренца и выражается формулой
(114.1)
где В — индукция магнитного поля, в котором заряд движется.
Направление силы Лоренца определяется с помощью правила левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор В, а четыре вытянутых пальца направить вдоль вектора v (для Q > 0 направления I и v совпадают, для Q < 0 — противоположны), то отогнутый большой палец покажет направление силы, действующей на положительный заряд. На рис. 169 показана взаимная ориентация векторов v, В (поле направлено к нам, на рисунке показано точками) и F для положительного заряда. На отрицательный заряд сила действует в противоположном направлении. Модуль силы Лоренца (см. (114.1)) равен

где a — угол между v и В.
Отметим еще раз (см. § 109), что магнитное поле не действует на покоящийся электрический заряд. В этом существенное отличие магнитного поля от электрического. Магнитное поле действует только на движущиеся в нем заряды.

Рис. 169

Так как по действию силы Лоренца можно найти модуль и направление вектора В, то выражение для силы Лоренца может быть использовано (наравне с другими, см. § 109) для определения вектора магнитной индукции В.
Сила Лоренца всегда перпендикулярна скорости движения заряженной частицы, поэтому она изменяет только направление этой скорости, не изменяя ее модуля. Следовательно, сила Лоренца работы не совершает. Иными словами, постоянное магнитное поле не совершает работы над движущейся в нем заряженной частицей и кинетическая энергия этой частицы при движении в магнитном поле не изменяется.
Если на движущийся электрический заряд помимо магнитного поля с индукцией В действует и электрическое поле с напряженностью Е, то результирующая сила F, приложенная к заряду, равна векторной сумме сил — силы, действующей со стороны электрического поля, и силы Лоренца:

Это выражение называется формулой Лоренца. Скорость v в этой формуле есть скорость заряда относительно магнитного поля.

§ 115. Движение заряженных частиц в магнитном
поле

Выражение для силы Лоренца (114.1) позволяет найти ряд закономерностей движения заряженных частиц в магнитном поле. Направление силы Лоренца и направление вызываемого ею отклонения заряженной частицы в магнитном поле зависят от знака заряда Q частицы. На этом основано определение знака заряда частиц, движущихся в магнитных полях.
Для вывода общих закономерностей будем считать, что магнитное поле однородно и на частицы электрические поля не действуют. Если заряженная частица движется в магнитном поле со скоростью v вдоль линий магнитной индукции, то угол а между векторами v и В равен 0 или n. Тогда по формуле (114.1) сила Лоренца равна нулю, т. е. магнитное поле на частицу не действует и она движется равномерно и прямолинейно.
Если заряженная частица движется в магнитном поле со скоростью v, перпендикулярной вектору В, то сила Лоренца F = Q[vB] постоянна по модулю и нормальна к траектории частицы. Согласно второму закону Ньютона, эта сила создает центростремительное ускорение. Отсюда следует, что частица будет двигаться по окружности, радиус r которой определяется из условия QvB = mv2/r, откуда
(115.1)
Период вращения частицы, т. е. время Т, за которое она совершает один полный оборот,

Подставив сюда выражение (115.1), получим
(115.2)
т. е. период вращения частицы в однородном магнитном поле определяется только величиной, обратной удельному заряду (Q/m) частицы, и магнитной индукцией поля, но не зависит от ее скорости (при v ? c). На этом основано действие циклических ускорителей заряженных частиц (см. § 116).
Если скорость v заряженной частицы направлена под углом a к вектору В (рис. 170), то ее движение можно представить в виде суперпозиции: 1) равномерного прямолинейного движения вдоль поля со скоростью v1 = vcosa; 2) равномерного движения со скоростью v^ = vsina по окружности в плоскости, перпендикулярной полю. Радиус окружности определяется формулой (115.1) (в данном случае надо заменить v на v^ = vsina). В результате сложения обоих движений возникает движение по спирали, ось которой параллельна магнитному полю (рис. 170).

Рис. 170

Шаг винтовой линии

Подставив в последнее выражение (115.2), получим

Направление, в котором закручивается спираль, зависит от знака заряда частицы.
Если скорость т заряженной частицы составляет угол а с направлением вектора В неоднородного магнитного поля, индукция которого возрастает в направлении движения частицы, то г и А уменьшаются с ростом В. На этом основана фокусировка заряженных частиц в магнитном поле.

§ 116. Ускорители заряженных частиц

Ускорителями заряженных частиц называются устройства, в которых под действием электрических и магнитных полей создаются и управляются пучки высокоэнергетичных заряженных частиц (электронов, протонов, мезонов и т. д.).
Любой ускоритель характеризуется типом ускоряемых частиц, энергией, сообщаемой частицам, разбросом частиц по энергиям и интенсивностью пучка. Ускорители делятся на непрерывные (из них выходит равномерный по времени пучок) и импульсные (из них частицы вылетают порциями — импульсами). Последние характеризуются длительностью импульса. По форме траектории и механизму ускорения частиц ускорители делятся на линейные, циклические и индукционные. В линейных ускорителях траектории движения частиц близки к прямым линиям, в циклических и индукционных — траекториями частиц являются окружности или спирали.
Рассмотрим некоторые типы ускорителей заряженных частиц.
Линейный ускоритель. Ускорение частиц осуществляется электростатическим полем, создаваемым, например, высоковольтным генератором Ван-де-Граафа (см. § 92). Заряженная частица проходит поле однократно: заряд Q, проходя разность потенциалов j1 - j2, приобретает энергию W = Q(j1 - j2). Таким способом частицы ускоряются до » 10 МэВ. Их дальнейшее ускорение с помощью источников постоянного напряжения невозможно из-за утечки зарядов, пробоев и т. д.
Линейный резонансный ускоритель. Ускорение заряженных частиц осуществляется переменным электрическим полем сверхвысокой частоты, синхронно изменяющимся с движением частиц. Таким способом протоны ускоряются до энергий порядка десятков мегаэлектрон-вольт, электроны — до десятков гигаэлектрон-вольт.
Циклотрон — циклический резонансный ускоритель тяжелых частиц (протонов, ионов). Его принципиальная схема приведена на рис. 171. Между полюсами сильного электромагнита помещается вакуумная камера, в которой находятся два электрода (1 и 2) в виде полых металлических полуцилиндров, или дуантов. К дуантам приложено переменное электрическое поле. Магнитное поле, создаваемое электромагнитом, однородно и перпендикулярно плоскости дуантов.

Рис. 171

Если заряженную частицу ввести в центр зазора между дуантами, то она, ускоряемая электрическим и отклоняемая магнитным полями, войдя в дуант 1, опишет полуокружность, радиус которой пропорционален скорости частицы (см. (115.1)). К моменту ее выхода из дуанта 1 полярность напряжения изменяется (при соответствующем подборе изменения напряжения между дуантами), поэтому частица вновь ускоряется и, переходя в дуант 2, описывает там уже полуокружность большего радиуса и т. д.
Для непрерывного ускорения частицы в циклотроне необходимо выполнить условие синхронизма (условие «резонанса») — периоды вращения частицы в магнитном поле и колебаний электрического поля должны быть равны. При выполнении этого условия частица будет двигаться по раскручивающейся спирали, получая при каждом прохождении через зазор дополнительную энергию. На последнем витке, когда энергия частиц и радиус орбиты доведены до максимально допустимых значений, пучок частиц посредством отклоняющего электрического поля выводится из циклотрона.
Циклотроны позволяют ускорять протоны до энергий примерно 20 МэВ. Дальнейшее их ускорение в циклотроне ограничивается релятивистским возрастанием массы со скоростью (см. (39.1)), что приводит к увеличению периода обращения (по (115.2) он пропорционален массе), и синхронизм нарушается. Поэтому циклотрон совершенно неприменим для ускорения электронов (при E = 0,5 МэВ m = 2m0, при E = 10 МэВ m = 28m0!).
Ускорение релятивистских частиц в циклических ускорителях можно, однако, осуществить, если применять предложенный в 1944 г. В. И. Векслером (1907—1966) и в 1945 г. американским физиком Э. Мак-Милланом (р. 1907) принцип автофазнровкн. Его идея заключается в том, что для компенсации увеличения периода вращения частиц, ведущего к нарушению синхронизма, изменяют либо частоту ускоряющего электрического, либо индукцию магнитного полей, либо то и другое. Принцип автофазировки используется в фазотроне, синхротроне и синхрофазотроне.
Фазотрон (синхроциклотрон) — циклический резонансный ускоритель тяжелых заряженных частиц (например, протонов, ионов, ос-частиц), в котором управляющее магнитное поле постоянно, частота ускоряющего электрического поля медленно изменяется с периодом. Движение частиц в фазотроне, как и в циклотроне, происходит по раскручивающейся спирали. Частицы в фазотроне ускоряются до энергий, примерно равных 1 ГэВ (ограничения здесь определяются размерами фазотрона, так как с ростом скорости частиц растет радиус их орбиты).
Синхротрон — циклический резонансный ускоритель ультрарелятивистских электронов, в котором управляющее магнитное поле изменяется во времени, а частота ускоряющего электрического поля постоянна. Электроны в синхротроне ускоряются до энергий 5—10 ГэВ.
Синхрофазотрон — циклический резонансный ускоритель тяжелых заряженных частиц (протонов, ионов), в котором объединяются свойства фазотрона и синхротрона, т. е. управляющее магнитное поле и частота ускоряющего электрического поля одно временно изменяются во времени так, чтобы радиус равновесной орбиты частиц оставался постоянным. Протоны ускоряются в синхрофазотроне до энергий 500 ГэВ. 7. Бетатрон — циклический индукционный ускоритель электронов, в котором ускорение осуществляется вихревым электрическим полем (см. § 137), индуцируемым переменным магнитным полем, удерживающим электроны на круговой орбите. В бетатроне в отличие от рассмотренных выше ускорителей не существует проблемы синхронизации. Электроны в бетатроне ускоряются до энергий 100 МэВ. При W > 100 МэВ режим ускорения в бетатроне нарушается электромагнитным излучением электронов. Особенно распространены бетатроны на энергии 20—50 МэВ.

§ 117. Эффект Холла

Эффект Холла* [* Э. Холл (1855—1938) — американский физик.]
(1879) — это возникновение в металле (или полупроводнике) с током плотностью j, помещенном в магнитное поле В, электрического поля в направлении, перпендикулярном В и j.
Поместим металлическую пластинку с током плотностью j в магнитное поле В, перпендикулярное j (рис. 172). При данном направлении j скорость носителей тока в металле — электронов — направлена справа налево. Электроны испытывают действие силы Лоренца (см. § 114), которая в данном случае направлена вверх. Таким образом, у верхнего края пластинки возникнет повышенная концентрация электронов (он зарядится отрицательно), а у нижнего — их недостаток (зарядится положительно). В результате этого между краями пластинки возникнет дополнительное поперечное электрическое поле, направленное снизу вверх. Когда напряженность Ев этого поперечного поля достигнет такой величины, что его действие на заряды будет уравновешивать силу Лоренца, то установится стационарное распределение зарядов в поперечном направлении. Тогда

где а — ширина пластинки, Dj — поперечная (холловская) разность потенциалов.

Рис. 172

Учитывая, что сила тока I = jS = nevS (S - площадь поперечного сечения пластинки толщиной а, n — концентрация электронов, v — средняя скорость упорядоченного движения электронов), получим
(117.1)
т. е. холловская поперечная разность потенциалов прямо пропорциональна магнитной индукции В, силе тока I и обратно пропорциональна толщине пластинки d. В формуле (117.1) R = 1/(en) — постоянная Холла, зависящая от вещества. По измеренному значению постоянной Холла можно: 1) определить концентрацию носителей тока в проводнике (при известных характере проводимости и заряде носителей); 2) судить о природе проводимости полупроводников (см. § 242, 243), так как знак постоянной Холла совпадает со знаком заряда е носителей тока. Эффект Холла поэтому — наиболее эффективный метод изучения энергетического спектра носителей тока в металлах и полупроводниках. Он применяется также для умножения постоянных токов в аналоговых вычислительных машинах, в измерительной технике (датчики Холла) и т. д.

§ 118. Циркуляция вектора В магнитного поля
в вакууме

<< Пред. стр.

стр. 10
(общее количество: 26)

ОГЛАВЛЕНИЕ

След. стр. >>