<< Пред. стр.

стр. 11
(общее количество: 26)

ОГЛАВЛЕНИЕ

След. стр. >>

Аналогично циркуляции вектора напряженности электростатического поля (см. § 83) введем циркуляцию вектора магнитной индукции. Циркуляцией вектора В по заданному замкнутому контуру называется интеграл

где dl — вектор элементарной длины контура, направленной вдоль обхода контура, B1 = Bcosa — составляющая вектора В в направлении касательной к контуру (с учетом выбранного направления обхода), a — угол между векторами В и dl.
Закон полного тока для магнитного поля в вакууме (теорема о циркуляции вектора В): циркуляция вектора В по произвольному замкнутому контуру равна произведению магнитной постоянной m0 на алгебраическую сумму токов, охватываемых этим контуром:
(118.1)
где n — число проводников с токами, охватываемых контуром L произвольной формы. Каждый ток учитывается столько раз, сколько раз он охватывается контуром. Положительным считается ток, направление которого .образует с направлением обхода по контуру правовинтовую систему; ток противоположного направления считается отрицательным. Например, для системы токов, изображенных на рис. 173,


Рис. 173

Выражение (118.1) справедливо только для поля в вакууме, поскольку, как будет показано ниже, для поля в веществе необходимо учитывать молекулярные токи.
Продемонстрируем справедливость теоремы о циркуляции вектора В на примере магнитного поля прямого тока /, перпендикулярного плоскости чертежа и направленного к нам (рис. 174). Представим себе замкнутый контур в виде окружности радиуса к. В каждой точке этого контура вектор В одинаков по модулю и направлен по касательной к окружности (она является и линией магнитной индукции). Следовательно, циркуляция вектора В равна

Согласно выражению (118.1), получим ВЧ2pr =m0I (в вакууме), откуда



Рис. 174

Таким образом, исходя из теоремы о циркуляции вектора В получили выражение для магнитной индукции поля прямого тока, выведенное выше (см. (110.5)).
Сравнивая выражения (83.3) и (118.1) для циркуляции векторов Е и В, видим, что между ними существует принципиальное различие. Циркуляция вектора В электростатического поля всегда равна нулю, т. е. электростатическое поле является потенциаль ным. Циркуляция вектора В магнитного поля не равна нулю. Такое поле называется вихревым,
Теорема о циркуляции вектора В имеет в учении о магнитном поле такое же значение, как теорема Гаусса в электростатике, так как позволяет находить магнитную индукцию поля без применения закона Био — Савара — Лапласа.

§ 119. Магнитные поля соленоида и тороида

Рассчитаем, применяя теорему о циркуляции, индукцию магнитного поля внутри соленоида. Рассмотрим соленоид длиной д, имеющий N витков, по которому течет ток (рис. 175). Длину соленоида считаем во много раз больше, чем диаметр его витков, т. е. рассматриваемый соленоид бесконечно длинный. Экспериментальное изучение магнитного поля соленоида (см. рис. 162, 6) показывает, что внутри соленоида поле является однородным, вне соленоида — неоднородным и очень слабым.
На рис. 175 представлены линии магнитной индукции внутри и вне соленоида. Чем соленоид длиннее, тем меньше магнитная индукция вне его. Поэтому приближенно можно считать, что поле бесконечно длинного соленоида сосредоточено целиком внутри него, а полем вне соленоида можно пренебречь.
Для нахождения магнитной индукции В выберем замкнутый прямоугольный кон тур ABCDA, как показано на рис. 175. Циркуляция вектора В по замкнутому контуру ABCDA, охватывающему все N витков, согласно (118.1), равна




Рис. 175

Интеграл по ABCDA можно представить в виде четырех интегралов: по АВ, ВС, CD и DA. На участках АВ и CD контур перпендикулярен линиям магнитной индукции и В,= 0. На участке вне соленоида В=0. На участке DA циркуляция вектора В равна В1 (контур совпадает с линией магнитной индукции); следовательно,
(119.1)
Из (119.1) приходим к выражению для магнитной индукции поля внутри соленоида (в вакууме):
(119.2)
Получили, что поле внутри соленоида однородно (краевыми эффектами в областях, прилегающих к торцам соленоида, при расчетах пренебрегают). Однако отметим, что вывод этой формулы не совсем корректен (линии магнитной индукции замкнуты, и интеграл по внешнему участку магнитного поля строго нулю не равен). Корректно рассчитать поле внутри соленоида можно, применяя закон Био — Савара — Лапласа; в результате получается та же формула (119.2).
Важное значение для практики имеет также магнитное поле тороида — кольцевой катушки, витки которой намотаны на сердечник, имеющий форму тора (рис. 176). Магнитное поле, как показывает опыт, сосредоточено внутри тороида, вне его поле отсутствует.
Линии магнитной индукции в данном случае, как следует из соображений симметрии, есть окружности, центры которых расположены по оси тороида. В качестве контура выберем одну такую окружность радиуса r. Тогда, по теореме о циркуляции (118.1), BЧ2pr = m0NI, откуда следует, что магнитная индукция внутри тороида (в вакууме)

где N — число витков тороида.

Рис. 176

Если контур проходит вне тороида, то токов он не охватывает и BЧ2pr = 0. Это означает, что поле вне тороида отсутствует (что показывает и опыт).

§ 120. Поток вектора магнитной индукции.
Теорема Гаусса для поля В

Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина, равная
(120.1)
где Вn = Всоsa. — проекция вектора В на направление нормали к площадке dS (a — угол между векторами n и В), dS = dSn— вектор, модуль которого равен dS, а направление его совпадает с направлением нормали n к площадке. Поток вектора В может быть как положительным, так и отрицательным в зависимости от знака cosa (определяется выбором положительного направления нормали n). Поток вектора В связывают с контуром, по которому течет ток. В таком случае положительное направление нормали к контуру нами уже определено (см. § 109): оно связывается с током правилом правого винта. Таким образом, магнитный поток, создаваемый контуром через поверхность, ограниченную им самим, всегда положителен.
Поток вектора магнитной индукции FB через произвольную поверхность S равен
(120.2)
Для однородного поля и плоской поверхности, расположенной перпендикулярно вектору В, Bn = B = const и

Из этой формулы определяется единица магнитного потока вебер (Вб): 1 Вб — магнитный поток, проходящий сквозь плоскую поверхность площадью 1 м2, расположенную перпендикулярно однородному магнитному полю, индукция которого равна 1 Тл (1 Вб = 1 ТлЧм2).
Теорема Гаусса для поля В: поток вектора магнитной индукции сквозь любую замкнутую поверхность равен нулю:
(120.3)
Эта теорема отражает факт отсутствия магнитных зарядов, вследствие чего линии магнитной индукции не имеют ни начала, ни конца и являются замкнутыми.
Итак, для потоков векторов В и Е сквозь замкнутую поверхность в вихревом и потенциальном полях получаются различные выражения (см. (120.3), (81.2)).
В качестве примера рассчитаем поток вектора В сквозь соленоид. Магнитная индукция однородного поля внутри соленоида с сердечником с магнитной проницаемостью m, согласно (119.2), равна

Магнитный поток сквозь один виток соленоида площадью S равен

а полный магнитный поток, сцепленный со всеми витками соленоида и называемый потокосцепленнем,
(120.4)
.

§ 121. Работа по перемещению проводника
и контура с током в магнитном поле

На проводник с током в магнитном поле действуют силы, определяемые законом Ампера (см. § 111). Если проводник не закреплен (например, одна из сторон контура изготовлена в виде подвижной перемычки, рис. 177), то под действием силы Ампера он будет в магнитном поле перемещаться. Следовательно, магнитное поле совершает работу по перемещению проводника с током.



Рис. 177

Для определения этой работы рассмотрим проводник длиной l с током I (он может свободно перемещаться), помещенный в однородное внешнее магнитное поле, перпендикулярное плоскости контура. Сила, направление которой определяется по правилу левой руки, а значение — по закону Ампера (см. (111.2)), равна

Под действием этой силы проводник переместится параллельно самому себе на от резок dx из положения 1 в положение 2. Работа, совершаемая магнитным полем, равна

так как ldx = dS — площадь, пересекаемая проводником при его перемещении в магнитном поле, BdS = dФ — поток вектора магнитной индукции, пронизывающий эту площадь. Таким образом,
(121.1)
т. е. 'работа по перемещению проводника с током в магнитном поле равна произведению силы тока на магнитный поток, пересеченный движущимся проводником. Полученная формула справедлива и для произвольного направления вектора В.

Рис. 178

Вычислим работу по перемещению замкнутого контура с постоянным током I в магнитном поле. Предположим, что контур М перемещается в плоскости чертежа и в результате бесконечно малого перемещения займет положение М', изображенное на рис. 178 штриховой линией. Направление тока в контуре (по часовой стрелке) и магнитного поля (перпендикулярно плоскости чертежа — за чертеж) указано на рисунке. Контур М мысленно разобьем на два соединенных своими концами проводника: ABC и CDА.
Работа dA, совершаемая силами Ампера при рассматриваемом перемещении контура в магнитном поле, равна алгебраической сумме работ по перемещению проводников ABC (dA1) и CDA (dA2), т. е.
(121.2)
Силы, приложенные к участку CDА контура, образуют с направлением перемещения острые углы, поэтому совершаемая ими работа dA2>0. Согласно (121.1), эта работа равна произведению силы тока I в контуре на пересеченный проводником CDA магнитный поток. Проводник CDА пересекает при своем движении поток dФ0 сквозь поверхность, выполненную в цвете, и поток dФ2, пронизывающий контур в его конечном положении. Следовательно,
(121.3)
Силы, действующие на участок AВС контура, образуют с направлением перемещения тупые углы, поэтому совершаемая ими работа dA1 < 0. Проводник AВС пересекает при своем движении поток dФ0 сквозь поверхность, выполненную в цвете, и поток dФ1, пронизывающий контур в начальном положении. Следовательно,
(121.4)
Подставляя (121.3) и (121.4) в (121.2), получим выражение для элементарной работы:

где dФ2 - dФ1 = dФ' — изменение магнитного потока сквозь площадь, ограниченную контуром с током. Таким образом,
(121.5)
Проинтегрировав выражение (121.5), определим работу, совершаемую силами Ампера, при конечном произвольном перемещении контура в магнитном поле:
(121.6)
т. е. работа по перемещению замкнутого контура с током в магнитном поле равна произведению силы тока в контуре на изменение магнитного потока, сцепленного с контуром. Формула (121.6) остается справедливой для контура любой формы в произвольном магнитном поле.

Задачи

14.1. Тонкое кольцо массой 15 г и радиусом 12 см несет заряд, равномерно распределенный с линейной плотностью 10 нКл/м. Кольцо равномерно вращается с частотой 8 с-1 относительно оси, перпендикулярной плоскости кольца и проходящей через ее центр. Определить отношение магнитного момента кругового тока, создаваемого кольцом, к его моменту импульса. [251 нКл/кг]

14.2. По проводу, согнутому в виде квадрата со стороной, равной 60 см, течет постоянный ток 3 А. Определить индукцию магнитного поля в центре квадрата. [5,66 мкТл]

14.3. По двум бесконечно длинным прямым параллельным проводникам, расстояние между которыми равно 25 см, текут токи 20 и 30 А в противоположных направлениях. Определить магнитную индукцию В в точке, удаленной на г1 =30 см от первого и г2=40 см от второго проводника. [9,5 мкТл]

14.4. Определить магнитную индукцию на оси тонкого проволочного кольца радиусом 10 см, по которому течет ток 10 А, в точке, расположенной на расстоянии 15 см от центра кольца. [10,7 мкТл]

14.5. Два бесконечных прямолинейных параллельных проводника с одинаковыми токами, текущими в одном направлении, находятся друг от друга на расстоянии R. Чтобы их раздвинуть до расстояния 3R, на каждый сантиметр длины проводника затрачивается работа А=220 нДж. Определить силу тока в проводниках. [10 А]

14.6. Определить напряженность поля, создаваемого прямолинейно равномерно движущимся со скоростью 500 км/с электроном в точке, находящейся от него на расстоянии 20 нм и лежащей на перпендикуляре к скорости, проходящем через мгновенное положение электрона. [15,9 А/м]

14.7. Протон, ускоренный разностью потенциалов 0,5 кВ, влетая в однородное магнитное поле с индукцией 0,1 Тл, движется по окружности. Определить радиус этой окружности. [3,23 см]

14.8. Определить, при какой скорости пучок заряженных частиц, проходя перпендикулярно область, в которой созданы однородные поперечные электрическое и магнитное поля с E = 10 кВ/м и В = 0,2 Тл, не отклоняется. [50 км/с]

14.9. Циклотрон ускоряет протоны до энергии 10 МэВ. Определить радиус дуантов циклотрона при индукции магнитного поля 1 Тл. [>47 см]

14.10. Через сечение медной пластинки толщиной 0,1 мм пропускается ток 5 А. Пластинка помещается в однородное магнитное поле с индукцией 0,5 Тл, перпендикулярное ребру пластинки и направлению тока. Считая концентрацию электронов проводимости равной концентрации атомов, определить возникающую в пластине поперечную (холловскую) разность потенциалов. Плотность меди 8,93 г/см3. [1,85 мкВ]

14.11. По прямому бесконечно длинному проводнику течет ток 15 А. Определить, пользуясь теоремой о циркуляции вектора В, магнитную индукцию В в точке, расположенной на расстоянии 15 см от проводника. [20 мкТл]

14.12. Определить, пользуясь теоремой о циркуляции вектора В, индукцию и напряженность магнитного поля на оси тороида без сердечника, по обмотке которого, содержащей 300 витков, протекает ток 1 А. Внешний диаметр тороида равен 60 см, внутренний — 40 см. [0.24 мТл; 191 А/м]

14.13. Поток магнитной индукции сквозь площадь поперечного сечения соленоида (без сердечника) Ф = 5 мкВб. Длина соленоида l = 25 см. Определить магнитный момент рт этого соленоида. [1 АЧм2]

14.14. Круглая рамка с током площадью 20 см2 закреплена параллельно магнитному полю (5 = 0,2 Тл), и на нее действует вращающий момент 0,6 мН'м. Рамку освободили, после поворота на 90° ее угловая скорость стала 20 с-1. Определить: 1) силу тока, текущего в рамке; 2) момент инерции рамки относительно ее диаметра. [1) 1,5 А; 2) 3Ч10 -6 кг м2]

























Глава 15
Электромагнитная индукция

§122. Явление электромагнитной индукции
(опыты Фарадея)

В гл. 14 было показано, что электрические токи создают вокруг себя магнитное поле. Связь магнитного поля с током привела к многочисленным попыткам возбудить ток в контуре с помощью магнитного поля. Эта фундаментальная задача была блестяще решена в 1831 г. английским физиком М. Фарадеем, открывшим явление электромагнитной индукции. Оно заключается в том, что в замкнутом проводящем контуре при изменении потока магнитной индукции, охватываемого этим контуром, возникает электрический ток, получивший название индукционного.
Рассмотрим классические опыты Фарадея, с помощью которых было обнаружено явление электромагнитной индукции.

Рис. 179

Опыт I (рис. 179, а). Если в замкнутый на гальванометр соленоид вдвигать или выдвигать постоянный магнит, то в моменты его вдвигания или выдвигания наблюдается отклонение стрелки гальванометра (возникает индукционный ток); направления отклонений стрелки при вдвигании и выдвигании магнита противоположны. Отклонение стрелки гальванометра тем больше, чем больше скорость движения магнита относительно катушки. При изменении полюсов магнита направление отклонения стрелки изменится. Для получения индукционного тока магнит можно оставлять неподвижным, тогда нужно относительно магнита передвигать соленоид.
Опыт П. Концы одной из катушек, вставленных одна в другую, присоединяются к гальванометру, а через другую катушку пропускается ток. Отклонение стрелки гальванометра наблюдается в моменты включения или выключения тока, в моменты его увеличения или уменьшения или при перемещении катушек друг относительно друга (рис. 179, б). Направления отклонений стрелки гальванометра также противоположны при включении или выключении тока, его увеличении или уменьшении, сближении или удалении катушек.
Обобщая результаты своих многочисленных опытов, Фарадой пришел к выводу, что индукционный ток возникает всегда, когда происходит изменение сцепленного с контуром потока магнитной индукции. Например, при повороте в однородном магнитном поле замкнутого проводящего контура в нем также возникает индукционный ток. В данном случае индукция магнитного поля вблизи проводника остается постоянной, а меняется только поток магнитной индукции сквозь контур.
Опытным путем было также установлено, что значение индукционного тока совершенно не зависит от способа изменения потока магнитной индукции, а определяется лишь скоростью его изменения (в опытах Фарадея также доказывается, что отклонение стрелки гальванометра (сила тока) тем больше, чем больше скорость движения магнита, или скорость изменения силы тока, или скорость движения катушек).
Открытие явления электромагнитной индукции имело большое значение, так как была доказана возможность получения электрического тока с помощью магнитного поля. Этим была установлена взаимосвязь между электрическими и магнитными явлениями, что послужило в дальнейшем толчком для разработки теории электромагнитного поля.

§ 123. Закон Фарадея и его вывод из закона
сохранения энергии

Обобщая результаты своих многочисленных опытов, Фарадей пришел к количествен ному закону электромагнитной индукции. Он показал, что всякий раз, когда происходит изменение сцепленного с контуром потока магнитной индукции, в контуре возникает индукционный ток; возникновение индукционного тока указывает на наличие в цепи электродвижущей силы, называемой электродвижущей силой электромагнитной индукции. Значение индукционного тока, а следовательно, и э.д.с. электромагнитной индукции x1 определяются только скоростью изменения магнитного потока, т. е.
(123.1)
Теперь необходимо выяснить знак x1. В § 120 было показано, что знак магнитного потока зависит от выбора положительной нормали к контуру. В свою очередь, положительное направление нормали определяется правилом правого винта (см. § 109). Следовательно, выбирая положительное направление нормали, мы определяем как знак потока магнитной индукции, так и направление тока и э.д.с. в контуре. Пользуясь этими представлениями и выводами, можно соответственно прийти к формулировке закона электромагнитной индукции Фарадея: какова бы ни была причина изменения потока магнитной индукции, охватываемого замкнутым проводящим кон туром, возникающая в контуре э. д. с.
(123.2)
Знак минус показывает, что увеличение потока вызывает э.д.с. x1 < 0, т. е. поле индукционного тока направлено навстречу потоку; уменьшение потока вызывает x1 > 0, т. е. направления потока и поля индукционного тока совпадают. Знак минус в формуле (123.2) определяется правилом Ленца — общим правилом для нахождения направления индукционного тока, выведенного в 1833 г.
Правило Ленца: индукционный ток в контуре имеет всегда такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызва вшему этот индукционный ток.
Закон Фарадея (см. (1232)) может быть непосредственно получен из закона со хранения энергии, как это впервые сделал Г. Гельмгольц. Рассмотрим проводник с током I, который помещен в однородное магнитное поле, перпендикулярное плоскости контура, и может свободно перемещаться (см. рис. 177). Под действием силы Ампера F, направление которой показано на рисунке, проводник перемещается на отрезок dx. Таким образом, сила Ампера производит работу (см. (121.1)) dA = IdФ, где dФ — пересеченный проводником магнитный поток.
Согласно закону сохранения энергии, работа источника тока за время dt (x1Idf) будет складываться из работы на джоулеву теплоту (I2Rdt) и работы по перемещению проводника в магнитном поле (IdФ):

где R — полное сопротивление контура. Тогда

где есть не что иное, как закон Фарадея (см. (123.2)).
Закон Фарадея можно сформулировать еще таким образом: э.д.с. Е, электромагнитной индукции в контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром. Этот закон является универсальным: э. д. с. Б, не зависит от способа изменения магнитного потока. Э.д.с. электромагнитной индукции выражается в вольтах. Действительно, учитывая, что единицей магнитного потока является вебер (Вб), получим

Какова природа э.д.с. электромагнитной индукции? Если проводник (подвижная перемычка контура на рис. 177) движется в постоянном магнитном поле, то сила Лоренца, действующая на заряды внутри проводника, движущиеся вместе с проводником, будет направлена противоположно току, т. е. она будет создавать в проводнике индукционный ток противоположного направления (за направление электрического тока принимается движение положительных зарядов). Таким образом, возбуждение э.д.с. индукции при движении контура в постоянном магнитном поле объясняется действием силы Лоренца, возникающей при движении проводника.
Согласно закону Фарадея, возникновение э.д.с. электромагнитной индукции воз можно и в случае неподвижного контура, находящегося в переменном магнитном поле. Однако сила Лоренца на неподвижные заряды не действует, поэтому в данном случае ею нельзя объяснить возникновение э.д.с. индукции. Максвелл для объяснения э. д. с. индукции в неподвижных проводниках предположил, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в проводнике. Циркуляция вектора ЕB этого поля по любому неподвижному контуру L проводника представляет собой э. д. с. электромагнитной индукции:
(123.3)


§ 124. Вращение рамки в магнитном поле

Явление электромагнитной индукции применяется для преобразования механической энергии в энергию электрического тока. Для этой цели используются генераторы, принцип действия которых можно рассмотреть на примере плоской рамки, вращающейся в однородном магнитном поле (рис. 180).
Предположим, что рамка вращается в однородном магнитном поле (В = const) равномерно с угловой скоростью w = const. Магнитный поток, сцепленный с рамкой площадью S, в любой момент времени t, согласно (120.1), равен

где a = wt — угол поворота рамки в момент времени t (начало отсчета выбрано так, чтобы при t = 0 было a = 0).
При вращении рамки в ней будет возникать переменная э.д.с. индукции (см. (123.2))
(124.1)
изменяющаяся со временем по гармоническому закону. При sinwt = l э.д.с. x1, максимальна, т. е.
(124.2)

Учитывая (124.2), выражение (124.1) можно записать в виде

Таким образом, если в однородном магнитном поле равномерно вращается рамка, то в ней возникает переменная э.д.с., изменяющаяся по гармоническому закону.
Из формулы (124.2) вытекает, что xmax (следовательно, и э.д.с. индукции) находится в прямой зависимости от величин w, В и S. В России принята стандартная частота тока v = w/(2p) = 50 Гц, поэтому возможно лишь увеличение двух остальных величин. Для увеличения В применяют мощные постоянные магниты или в электромагнитах пропускают значительный ток, а также внутрь электромагнита помещают сердечники из материалов с большой магнитной проницаемостью m. Если вращать не один, а ряд витков, соединенных последовательно, то тем самым увеличивается S. Переменное напряжение снимается с вращающегося витка с помощью щеток, схематически изображенных на рис. 180.

Рис. 180

Процесс превращения механической энергии в электрическую обратим. Если по рамке, помещенной в магнитное поле, пропускать электрический ток, то в соответствии с (109.1) на нее будет действовать вращающий момент и рамка начнет вращаться. На этом принципе основана работа электродвигателем, предназначенных для превращения электрической энергии в механическую.



§ 125. Вихревые токи (токи Фуко)

Индукционный ток возникает не только в линейных проводниках, но и в массивных сплошных проводниках, помещенных в переменное магнитное поле. Эти токи оказываются замкнутыми в толще проводника и поэтому называются вихревыми. Их также называют токами Фуко — по имени первого исследователя.
Токи Фуко, как и индукционные токи в линейных проводниках, подчиняются правилу Ленца: их магнитное поле направлено так, чтобы противодействовать изменению магнитного потока, индуцирующему вихревые токи. Например, если между полюсами невключенного электромагнита массивный медный маятник совершает практически незатухающие колебания (рис. 181), то при включении тока он испытывает сильное торможение и очень быстро останавливается. Это объясняется тем, что возникшие токи Фуко имеют такое направление, что действующие на них со стороны магнитного поля силы тормозят движение маятника. Этот факт используется для успокоения (демпфирования) подвижных частей различных приборов. Если в описан ном маятнике сделать радиальные вырезы, то вихревые токи ослабляются и торможение почти отсутствует.

Рис. 181

Вихревые токи помимо торможения (как правило, нежелательного эффекта) вызывают нагревание проводников. Поэтому для уменьшения потерь на нагревание якоря генераторов и сердечники трансформаторов делают не сплошными, а изготовляют из тонких пластин, отделенных одна от другой слоями изолятора, и устанавливают их так, чтобы вихревые токи были направлены поперек пластин. Джоулева теплота, выделяемая токами Фуко, используется в индукционных металлургических печах. Индукционная печь представляет собой тигель, помещаемый внутрь катушки, в которой пропускается ток высокой частоты. В металле возникают интенсивные вихревые токи, способные разогреть его до плавления. Такой способ позволяет плавить металлы в вакууме, в результате чего получаются сверхчистые материалы.
Вихревые токи возникают и в проводах, по которым течет переменный ток. Направление этих токов можно определить по правилу Ленца. На рис. 182, а показано направление вихревых токов при возрастании первичного тока в проводнике, а на рис. 182, б — при его убывании. В обоих случаях направление вихревых токов таково, что они противодействуют изменению первичного тока внутри проводника и способствуют его изменению вблизи поверхности. Таким образом, вследствие возникновения вихревых токов быстропеременный ток оказывается распределенным по сечению провода неравномерно — он как бы вытесняется на поверхность проводника. Это явление получило название скин-эффекта (от англ, skin — кожа) или поверхностного эффекта. Так как токи высокой частоты практически текут в тонком поверхностном слое, то провода для них делаются полыми.

Рис. 182

Если сплошные проводники нагревать токами высокой частоты, то в результате скин-эффекта происходит нагревание только их поверхностного слоя. На этом основан метод поверхностной закалки металлов. Меняя частоту поля, он позволяет производить закалку на любой требуемой глубине.

§ 126. Индуктивность контура. Самоиндукция

Электрический ток, текущий в замкнутом контуре, создает вокруг себя магнитное поле, индукция которого, по закону Био - Савара - Лапласа (см. (110.2)), пропорциональна току. Сцепленный с контуром магнитный поток Ф поэтому пропорционален току I в контуре:
(126.1)
где коэффициент пропорциональности L называется индуктивностью контура.
При изменении силы тока в контуре будет изменяться также и сцепленный с ним магнитный поток; следовательно, в контуре будет индуцироваться э.д.с. Возникновение э.д.с. индукции в проводящем контуре при изменении в нем силы тока называется самоиндукцией.
Из выражения (126.1) определяется единица индуктивности генри (Гн): 1 Гн — индуктивность такого контура, магнитный поток самоиндукции которого при токе в 1 А равен 1 Вб:

Рассчитаем индуктивность бесконечно длинного соленоида. Согласно (120.4), полный магнитный поток сквозь соленоид (потокосцепление) равен Подставив это выражение в формулу (126.1), получим
(126.2)
т. е. индуктивность соленоида зависит от числа витков соленоида N, его длины l, площади S и магнитной проницаемости m вещества, из которого изготовлен сердечник соленоида.
Можно показать, что индуктивность контура в общем случае зависит только от геометрической формы контура, его размеров и магнитной проницаемости той среды, в которой он находится. В этом смысле индуктивность контура — аналог электрической емкости уединенного проводника, которая также зависит только от формы проводника, его размеров и диэлектрической проницаемости среды (см. § 93).
Применяя к явлению самоиндукции закон Фарадея (см. (123.2)), получим, что э. д. с. самоиндукции


Если контур не деформируется и магнитная проницаемость среды не изменяется (в дальнейшем будет показано, что последнее условие выполняется не всегда), то L = const и
(126.3)
где знак минус, обусловленный правилом Ленца, показывает, что наличие индуктивности в контуре приводит к замедлению изменения тока в нем.
Если ток со временем возрастает, то и xS < 0, т. е. ток самоиндукции направлен навстречу току, обусловленному внешним источником, и замедляет его возрастание. Если ток со временем убывает, то и xS > 0 , т. е. индукционный ток имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание. Таким образом, контур, обладая определенной индуктивностью, приобретает электрическую инертность, заключающуюся в том, что любое изменение тока тормозится тем сильнее, чем больше индуктивность контура.





§ 127. Токи при размыкании и замыкании цепи

При всяком изменении силы тока в проводящем контуре возникает э. д. с. самоиндукции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, все гда направлены так, чтобы препятствовать изменениям тока в цепи, т. е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.
Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. x, резистор сопротивлением R и катушку индуктивностью L. Под действием внешней э. д. с. в цепи течет постоянный ток

(внутренним сопротивлением источника тока пренебрегаем).
В момент времени t = 0 отключим источник тока. Ток в катушке индуктивностью L начнет уменьшаться, что приведет к возникновению э.д.с. самоиндукции препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I = xS/R, или
(127.1)
Разделив в выражении (127.1) переменные, получим . Интегрируя это уравнение по I (от I0 до I) и t (от 0 до f), находим In (I/I0) = —Rt/L, или
(127.2)
где t = L/R — постоянная, называемая временем релаксации. Из (127.2) следует, что т есть время, в течение которого сила тока уменьшается в е раз.
Таким образом, в процессе отключения источника тока сила тока убывает по экспоненциальному закону (127.2) и определяется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше t и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.



Рис. 183

При замыкании цепи помимо внешней э. д. с. x возникает э. д. с. самоиндукции препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома, IR = x + xS или

Введя новую переменную u = IR - x , преобразуем это уравнение к виду

где t — время релаксации.
В момент замыкания (t = 0) сила тока I = 0 и u = -? . Следовательно, интегрируя по u (от - ? до IR - ? ) и t (от 0 до t), находим In [(IR - ?)]/ -? = -t/t, или
(127.3)
где I0 = ?/R — установившийся ток (при t ® Ґ).
Таким образом, в процессе включения источника тока нарастание силы тока в цепи задается функцией (127.3) и определяется кривой 2 на рис. 183. Сила тока возрастает от начального значения I = 0 и асимптотически стремится к установившемуся значению I0 = ? /R. Скорость нарастания тока определяется тем же временем релаксации t = L/R, что и убывание тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление.
Оценим значение э.д.с. самоиндукции ?S, возникающей при мгновенном увеличении сопротивления цепи постоянного тока от R0 до R. Предположим, что мы размыкаем контур, когда в нем течет установившийся ток I0 = ?/R0. При размыкании цепи ток изменяется по формуле (1272). Подставив в нее выражение для I0 и т, получим

т. е. при значительном увеличении сопротивления цепи (R/R0 ? 1), обладающей большой индуктивностью, э.д.с. самоиндукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учитывать, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (возникновение значительных э.д.с. самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции не достигнет больших значений.

§ 128. Взаимная индукция

Рассмотрим два неподвижных контура (1 и 2), расположенных достаточно близко друг от друга (рис. 184).


Рис. 184

Если в контуре 1 течет ток I1 то магнитный поток, создаваемый этим током (поле, создающее этот поток, на рисунке изображено сплошными линиями), пропорционален I1. Обозначим через Ф21 ту часть потока, которая пронизывает контур 2. Тогда
(128.1)

где L21 — коэффициент пропорциональности.
Если ток I1 изменяется, то в контуре 2 индуцируется э.д.с. ?12, которая по закону Фарадея (см. (123.2)) равна и противоположна по знаку скорости изменения магнитного потока Ф21 созданного током в первом контуре и пронизывающего второй:

Аналогично, при протекании в контуре 2 тока I2 магнитный поток (его поле изображено на рис. 184 штриховыми линиями) пронизывает первый контур. Если Ф12 — часть этого потока, пронизывающего контур 1, то

Если ток I2 изменяется, то в контуре 1 индуцируется э.д.с. ?i1, которая равна и противоположна по знаку скорости изменения магнитного потока Ф12, созданного током во втором контуре и пронизывающего первый:

Явление возникновения э.д.с. в одном из контуров при изменении силы тока в другом называется взаимной индукцией. Коэффициенты пропорциональности L21 и L12 называются взаимной индуктивностью контуров. Расчеты, подтверждаемые опытом, показывают, что L21 и L12 равны друг другу, т. е.
(128.2)
Коэффициенты L12 и L21 зависят от геометрической формы, размеров, взаимного расположения контуров и от магнитной проницаемости окружающей контуры среды. Единица взаимной индуктивности та же, что и для индуктивности, — генри (Гн).
Рассчитаем взаимную индуктивность двух катушек, намотанных на общий тороидальный сердечник. Этот случай имеет большое практическое значение (рис. 185).

Рис. 185

Магнитная индукция поля, создаваемого первой катушкой с числом витков N1, током I1 и магнитной проницаемостью m сердечника, согласно (119.2), , где l — длина сердечника по средней линии. Магнитный поток сквозь один виток второй катушки .
Тогда полный магнитный поток (потокосцепление) сквозь вторичную обмотку, содержащую N2 витков,

Поток Y создается током I1 поэтому, согласно (128.1), получаем
(128.3)
Если вычислить магнитный поток, создаваемый катушкой 2 сквозь катушку 1, то для L12 получим выражение в соответствии с формулой (128.3). Таким образом, взаимная индуктивность двух катушек, намотанных на общий тороидальный сердечник,


§ 129. Трансформаторы

Принцип действия трансформаторов, применяемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции. Впервые трансформаторы были сконструированы и введены в практику русским электротехником П. Н. Яблочковым (1847—1894) и русским физиком И. Ф. Усагиным (1855—1919). Принципиальная схема трансформатора показана на рис. 186.

Рис. 186

Первичная и вторичная катушки (обмотки), имеющие соответственно N1 и N2 витков, укреплены на замкнутом железном сердечнике. Так как концы первичной обмотки присоединены к источнику переменного напряжения с э.д.с. ?1 то в ней возникает переменный ток создающий в сердечнике трансформатора переменный магнитный поток Ф, который практически полностью локализован в железном сердечнике и, следовательно, почти целиком пронизывает витки вторичной обмотки. Изменение этого потока вызывает во вторичной обмотке появление э.д.с. взаимной индукции, а в первичной — э.д.с. самоиндукции. Ток I1 первичной обмотки определяется согласно закону Ома:

где R1 — сопротивление первичной обмотки. Падение напряжения I1R1 на сопротивлении R1 при быстропеременных полях малo по сравнению с каждой из двух э.д,с., поэтому
(129.1)
Э.д.с. взаимной индукции, возникающая во вторичной обмотке,
(129.2)
Сравнивая выражения (129.1) и (129.2), получим, что э.д.с., возникающая во вторичной обмотке,
(129.3)
где знак минус показывает, что э.д.с. в первичной и вторичной обмотках противоположны по фазе.
Отношение числа витков N2/N1, показывающее, во сколько раз э.д.с. во вторичной обмотке трансформатора больше (или меньше), чем в первичной, называется коэффициентом трансформации.
Пренебрегая потерями энергии, которые в современных трансформаторах не превышают 2% и связаны в основном с выделением в обмотках джоулевой теплоты и появлением вихревых токов, и применяя закон сохранения энергии, можем записать, что мощности тока в обеих обмотках трансформатора практически одинаковы:

откуда, учитывая соотношение (129.3), найдем

т. е. токи в обмотках обратно пропорциональны числу витков в этих обмотках.
Если n2/n1 > 1, то имеем дело с повышающий трансформатором, увеличивающим переменную э.д.с. и понижающим ток (применяются, например, для передачи электроэнергии на большие расстояния, так как в данном случае потери на джоулеву теплоту, пропорциональные квадрату силы тока, снижаются); если n2/n1 < 1, то имеем дело с понижающим трансформатором, уменьшающим э.д.с. и повышающим ток (применяются, например, при электросварке, так как для нее требуется большой ток при низком напряжении).
Мы рассматривали трансформаторы, имеющие только две обмотки. Однако транс форматоры, используемые в радиоустройствах, имеют 4—5 обмоток, обладающих разными рабочими напряжениями. Трансформатор, состоящий из одной обмотки, называется автотрансформатором. В случае повышающего автотрансформатора э.д.с. подводится к части обмотки, а вторичная э.д.с. снимается со всей обмотки. В понижающем автотрансформаторе напряжение сети подается на всю обмотку, а вторичная э.д.с. снимается с части обмотки.

§ 130. Энергия магнитного поля

Проводник, по которому протекает электрический ток, всегда окружен магнитным полем, причем магнитное поле появляется и исчезает вместе с появлением и исчезновением тока. Магнитное поле, подобно электрическому, является носителем энергии. Естественно предположить, что энергия магнитного поля равна работе, которая затрачивается током на создание этого поля.
Рассмотрим контур индуктивностью L, по которому течет ток I. С данным контуром сцеплен магнитный поток (см. (126.1)) F = LI, причем при изменении тока на dI магнитный поток изменяется на dФ = LdI. Однако для изменения магнитного потока на величину dФ (см. § 121) необходимо совершить работу dA = IdF = LIdI. Тогда работа по созданию магнитного потока Ф будет равна

Следовательно, энергия магнитного поля, связанного с контуром,
(130.1)
Исследование свойств переменных магнитных полей, в частности распространения электромагнитных волн, явилось доказательством того, что энергия магнитного поля локализована в пространстве. Это соответствует представлениям теории поля.
Энергию магнитного поля можно представить как функцию величин, характеризующих это поле в окружающем пространстве. Для этого рассмотрим частный случай — однородное магнитное поле внутри длинного соленоида. Подставив в формулу (130.1) выражение (126.2), получим


Так как I = Bl n2/n1 > 1N) (см. (119.2)) и B = n2/n1 > 1 (см. (109.3)), то
(130.2)
где Sl = V— объем соленоида.
Магнитное поле соленоида однородно и сосредоточено внутри него, поэтому энергия (см. (130.2)) заключена в объеме соленоида и распределена в нем с постоянной объемной плотностью
(130.3)
Выражение (130.3) для объемной плотности энергии магнитного поля имеет вид, аналогичный формуле (95.8) для объемной плотности энергии электростатического поля, с той разницей, что электрические величины заменены в нем магнитными. Формула (130.3) выведена для однородного поля, но она справедлива и для неоднородных полей. Выражение (130.3) справедливо только для сред, для которых зависимость В от Н линейная, т. е. оно относится только к пара- и диамагнетикам (см. § 132).


Задачи

15.1. Кольцо из алюминиевого провода (r = 26 нОм-м) помещено в магнитное поле перпендикулярно линиям магнитной индукции. Диаметр кольца 20 см, диаметр провода 1 мм. Определить скорость изменения магнитного поля, если сила тока в кольце 0,5 А. [0,33 Тл/с]

15.2. В однородном магнитном поле, индукция которого 0,5 Тл, равномерно с частотой 300 мин-1 вращается катушка, содержащая 200 витков, плотно прилегающих друг к другу. Площадь поперечного сечения катушки 100 см2. Ось вращения перпендикулярна оси катушки и направлению магнитного поля. Определить максимальную э.д.с., индуцируемую в катушке. [31,4 В]

15.3. Определить, сколько витков проволоки, вплотную прилегающих друг к другу, диаметром 0,3 мм с изоляцией ничтожно малой толщины надо намотать на картонный цилиндр диаметром 1 см, чтобы получить однослойную катушку с индуктивностью 1 мГн. [3040]

15.4. Определить, через сколько времени сила тока замыкания достигнет 0,98 пре дельного значения, если источник тока замыкают на катушку сопротивлением 10 Ом и индуктивностью 0,4 Гн. [0,16 с] 15.5.

15.5. Два соленоида (индуктивность одного L1=0,36 Гн, второго L2 = 0,64 Гн) одинаковой длины и практически равного сечения вставлены один в другой. Определить взаимную индуктивность соленоидов. [0,48 Гн] 15.8.

15.6. Автотрансформатор, понижающий напряжение с U1=5,5 кВ до U2=220 В, содержит в первичной обмотке N1 = 1500 витков. Сопротивление вторичной обмотки R2 = 2 Ом. Сопротивление внешней цепи (в сети пониженного напряжения) R = 13 Ом. Пренебрегая сопротивлением первичной обмотки, определить число витков во вторичной обмотке трансформатора. [68]


































<< Пред. стр.

стр. 11
(общее количество: 26)

ОГЛАВЛЕНИЕ

След. стр. >>