<< Пред. стр.

стр. 22
(общее количество: 26)

ОГЛАВЛЕНИЕ

След. стр. >>

Контактная разность потенциалов зависит лишь от химического состава и температуры соприкасающихся металлов.
Контактная разность потенциалов последовательно соединенных различных проводников, находящихся при одинаковой температуре, не зависит от химического состава промежуточных проводников и равна контактной разности потенциалов, возникающей при непосредственном соединении крайних проводников.
Для объяснения возникновения контактной разности потенциалов воспользуемся представлениями зонной теории. Рассмотрим контакт двух металлов с различными работами выхода А1 и А2, т. е. с различными положениями уровня Ферми (верхнего заполненного электронами энергетического уровня). Если А1 < А2 (этот случай изображен на рис. 330, а), то уровень Ферми располагается в металле 1выше, чем в металле 2. Следовательно, при контакте металлов электроны с более высоких уровней металла 1будут переходить на более низкие уровни металла 2, что приведет к тому, что металл 1 зарядится положительно, а металл 2 — отрицательно. Одновременно происходит относительное смещение энергетических уровней: в металле, заряжающемся положительно, все уровни смещаются вниз, а в металле, заряжающемся отрицательно, — вверх. Этот процесс будет происходить до тех пор, пока между соприкасающимися металлами не установится равновесие, которое, как доказывается в статистической физике, характеризуется совпадением уровней Ферми в обоих металлах (рис. 330,6), Так как для соприкасающихся металлов уровни Ферми совпадают, а работы выхода A1 и А2 не изменяются (они являются константами металлов и не зависят от того, находятся металлы в контакте или нет), то потенциальная энергия электронов в точках, лежащих вне металлов в непосредственной близости к их по верхности (точки А и В на рис. 330, б), будет различной. Следовательно, между точками А и В устанавливается разность потенциалов, которая, как следует из рисунка, равна
(246.1)


Рис. 330

Разность потенциалов (246.1), обусловленная различием работ выхода контактирующих металлов, называется внешней контактной разностью потенциалов. Чаще говорят просто о контактной разности потенциалов, подразумевая под ней внешнюю.
Если уровни Ферми для двух контактирующих металлов не одинаковы, то между внутренними точками металлов наблюдается внутренняя контактная разность потенциалов, которая, как следует из рисунка, равна
(246.2)
В квантовой теории доказывается, что причиной возникновения внутренней контактной разности потенциалов является различие концентраций электронов в контактирующих металлах. Dj" зависит от температуры Т контакта металлов (поскольку наблюдается зависимость ЕF от Т), обусловливая термоэлектрические явления. Как правило, Dj" << Dj'.
Если, например, привести в соприкосновение три разнородных проводника, имеющих одинаковую температуру, то разность потенциалов между концами разомкнутой цепи равна алгебраической сумме скачков потенциала во всех контактах. Она, как можно показать (предоставляем это сделать читателю), не зависит от природы промежуточных проводников (второй закон Вольта).
Внутренняя контактная разность потенциалов возникает в двойном электрическом слое, образующемся в приконтактной области и называемом контактным слоем. Толщина контактного слоя в металлах составляет примерно
10-10 м, т. е. соизмерима с междоузельными расстояниями в решетке металла. Число электронов, участвующих в диффузии через контактный слой, составляет примерно 2% от общего числа электронов, находящихся на поверхности металла. Столь незначительное изменение концентрации электронов в контактном слое, с одной стороны, и малая по сравнению с длиной свободного пробега электрона его толщина — с другой, не могут привести к заметному изменению проводимости контактного слоя по сравнению с остальной частью металла. Следовательно, электрический ток через контакт двух металлов проходит так же легко, как и через сами металлы, т. е. контактный слой проводит электрический ток в обоих направлениях (1®2 и 2®1) одинаково и не дает эффекта выпрямления, который всегда связан с односторонней проводимостью.

§ 247. Термоэлектрические явления и их
применение

Согласно второму закону Вольта, в замкнутой цепи, состоящей из нескольких металлов, находящихся при одинаковой температуре, э.д.с. не возникает, т. е. не происходит возбуждения электрического тока. Однако если температура контактов не одинакова, то в цепи возникает электрический ток, называемый термоэлектрическим. Явление возбуждения термоэлектрического тока (явление Зеебека), а также тесно связанные с ним явления Пельте и Томсона называются термоэлектрическими явлениями.
1. Явление Зеебека (1821). Немецкий физик Т. Зеебек (1770—1831) обнаружил, что в замкнутой цепи, состоящей из последовательно соединенных разнородных проводников, контакты между которыми имеют различную температуру, возникает элект рический ток.
Рассмотрим замкнутую цепь, состоящую из двух металлических проводников 1 и 2 с температурами спаев Т1 (контакт А) и Т2 (контакт В), причем Т1 > Т2 (рис. 331).
Не вдаваясь в подробности, отметим, что в замкнутой цепи для многих пар металлов (например, Сu—Bi, Ag—Си, Аu — Си) электродвижущая сила прямо пропорциональна разности температур в контактах:

Эта э.д.с. называется термоэлектродвижущей силой. Направление тока при T1 > T2 на рис. 331 показано стрелкой. Термоэлектродвижущая сила, например для пары металлов медь — константан, для разности температур 100 К составляет всего 4,25 мВ.


Рис. 331

Причина возникновения термоэлектродвижущей э.д.с. ясна уже из формулы (246.2), определяющей внутреннюю контактную разность потенциалов на границе двух металлов. Дело в том, что положение уровня Ферми зависит от температуры. Поэтому если температуры контактов разные, то разными будут и внутренние контактные разности потенциалов. Таким образом, сумма скачков потенциала отлична от нуля, что и приводит к возникновению термоэлектрического тока. Отметим также, что при градиенте температуры происходит и диффузия электронов, которая тоже обусловливает термо-э.д.с.
Явление Зеебека не противоречит второму началу термодинамики, так как в данном случае внутренняя энергия преобразуется в электрическую, для чего используется два источника теплоты (два контакта). Следовательно, для поддержания постоянного тока в рассматриваемой цепи необходимо поддерживать постоянство разности температур контактов: к более нагретому контакту непрерывно подводить теплоту, а от холодного — непрерывно ее отводить.
Явление Зеебека используется для измерения температуры. Для этого применяются термоэлемент, или термопары — датчики температур, состоящие из двух соединенных между собой разнородных металлических проводников. Если контакты (обычно спаи) проводников (проволок), образующих термопару, находятся при разных температурах, то в цепи возникает термоэлектродвижущая сила, которая зависит от разности температур контактов и природы применяемых материалов. Чувствительность термопар выше, если их соединять последовательно. Эти соединения называются термобатареями (или тремостолбиками). Термопары применяются как для измерения ничтожно малых разностей температур, так и для измерения очень высоких и очень низких температур (например, внутри доменных печей или жидких газов). Точность определения температуры с помощью термопар составляет, как правило, несколько кельвин, а у некоторых термопар достигает » 0,01 К. Термопары обладают рядом преимуществ перед обычными термометрами: имеют большую чувствительность и малую инерционность, позволяют проводить измерения в широком интервале температур и допускают дистанционные измерения.
Явление Зеебека в принципе может быть использовано для генерации электрического тока. Так, уже сейчас к. п.д. полупроводниковых термобатарей достигает » 18%. Следовательно, совершенствуя полупроводниковые термоэлектрогенераторы, можно добиться эффективного прямого преобразования солнечной энергии в электрическую.
2. Явление Пельтье (1834). Французский физик Ж. Пельтье (1785—1845) обнаружил, что при прохождении через контакт двух различных проводников электрического тока в зависимости от его направления помимо джоулевой теплоты выделяется или поглощается дополнительная теплота. Таким образом, явление Пельтье является обратным по отношению к явлению Зеебека. В отличие от джоулевой теплоты, которая пропорциональна квадрату силы тока, теплота Пельтье пропорциональна первой степени силы тока и меняет знак при изменении направления тока.
Рассмотрим замкнутую цепь, состоящую из двух разнородных металлических проводников 1 и 2 (рис. 332), по которым пропускается ток I' (его направление в данном случае выбрано совпадающим с направлением термотока (на рис. 331 при условии T1 > T2)). Согласно наблюдениям Пельтье, спай А, который при явлении Зеебека поддерживался бы при более высокой температуре, будет теперь охлаждаться, а спай В — нагреваться. При изменении направления тока I' спай А будет нагреваться, спай В — охлаждаться.

Рис. 332

Объяснить явление Пельтье можно следующим образом. Электроны по разную сторону спая обладают различной средней энергией (полной — кинетической плюс потенциальной). Если электроны (направление их движения задано на рис. 332 пунктир ными стрелками) пройдут через спай В и попадут в область с меньшей энергией, то избыток своей энергии они отдадут кристаллической решетке и спай будет нагреваться. В спае А электроны переходят в область с большей энергией, забирая теперь недоста ющую энергию у кристаллической решетки, и спай будет охлаждаться.
Явление Пельтье используется в термоэлектрических полупроводниковых холодильниках, созданных впервые в 1954 г. под руководством А. Ф. Иоффе, и в некоторых электронных приборах.
3. Явление Томсона (1856). Вильям Томсон (Кельвин), исследуя термоэлектрические явления, пришел к заключению, подтвердив его экспериментально, что при прохождении тока по неравномерно нагретому проводнику должно происходить дополнительное выделение (поглощение) теплоты, аналогичной теплоте Пельтье. Это явление получило название явления Томсона. Его можно объяснить следующим образом. Так как в более нагретой части проводника электроны имеют бблыпую среднюю энергию, чем в менее нагретой, то, двигаясь в направлении убывания температуры, они отдают часть своей энергии решетке, в результате чего происходит выделение теплоты Томсона. Если же электроны движутся в сторону возрастания температуры, то они, наоборот, пополняют свою энергию за счет энергии решетки, в результате чего происходит поглощение теплоты Томсона.

§ 248. Выпрямление на контакте металл —
полупроводник

Рассмотрим некоторые особенности механизма процессов, происходящих при приведе нии в контакт металла с полупроводником. Для этого возьмем полупроводник n-типа с работой выхода А, меньшей работы выхода АM из металла. Соответствующие энергетические диаграммы до и после приведения в контакт показаны на рис. 333, а, б



Рис. 333

Если АM > А, то при контакте электроны из полупроводника будут переходить в металл, в результате чего контактный слой полупроводника обеднится электронами и зарядится положительно, а металл — отрицательно. Этот процесс будет происходить до достижения равновесного состояния, характеризуемого, как и при контакте двух металлов, выравниванием уровней Ферми для металла и полупроводника. На контакте образуется двойной электрический слой d, поле которого (контактная разность потенциалов) препятствует дальнейшему переходу электронов. Вследствие малой концентрации электронов проводимости в полупроводнике (порядка 1015 см-3 вместо 10-6 см-3 в металлах) толщина контактного слоя в полупроводнике достигает примерно 10-6 см, т. е. примерно в 10 000 раз больше, чем в металле. Контактный слой полупроводника обеднен основными носителями тока — электронами в зоне проводимости, и его сопротивление значительно больше, чем в остальном объеме полупровод ника. Такой контактный слой называется запирающим.
При d = 10-6 см и Dj » 1 В напряженность электрического поля контактного слоя E = Dj/d » 108 В/м. Такое контактное поле не может сильно повлиять на структуру спектра (например, на ширину запрещенной зоны, на энергию активации примесей и т. д.) и его действие сводится лишь к параллельному искривлению всех энергетичес ких уровней полупроводника в области контакта (рис. 333,б). Так как в случае контакта уровни Ферми выравниваются, а работы выхода — величины постоянные, то при АМ > А энергия электронов в контактном слое полупроводника больше, чем в остальном объеме. Поэтому в контактном слое дно зоны проводимости поднимается вверх, удаляясь от уровня Ферми. Соответственно происходит и искривление верхнего края валентной зоны, а также донорного уровня.
Помимо рассмотренного выше примера возможны еще следующие три случая контакта металла с примесными полупроводниками: а) АМ < А, полупроводник n-типа; б) АM > А, полупроводник p-типа; в) АМ<А, полупроводник p -типа. Соответствующие зонные схемы показаны на рис. 334.

Рис. 334

Если АМ < А, то при контакте металла с полупроводником n-типа электроны из металла переходят в полупроводник и образуют в контактном слое полупроводника отрицательный объемный заряд (рис. 334, а). Следовательно, контактный слой полу проводника обладает повышенной проводимостью, т. е. не является запирающим. Рассуждая аналогично, можно показать, что искривление энергетических уровней по сравнению с контактом металл — полупроводник n-типа (АM > А) происходит в обратную сторону.
При контакте металла с полупроводником р-типа запирающий слой образуется при АМ < А (рис. 334, в), так как в контактном слое полупроводника наблюдается избыток отрицательных ионов акцепторных примесей и недостаток основных носителей тока— дырок в валентной зоне. Если же АМ > А (рис. 334, б), то в контактном слое полупроводника р-типа наблюдается избыток основных носителей тока — дырок в валентной зоне, контактный слой обладает повышенной проводимостью.
Исходя из приведенных рассуждений, видим, что запирающий контактный слой возникает при контакте донорного полупроводника с меньшей работой выхода, чем у металла (см. рис. 333, б), и у акцепторного — с большей работой выхода, чем у металла (рис. 333, в).
Запирающий контактный, слой обладает односторонней (вентильной) проводимостью, т. е. при приложении к контакту внешнего электрического поля он пропускает ток практически только в одном направлении: либо из металла в полупроводник, либо из полупроводника в металл. Это важнейшее свойство запирающего слоя объясняется зависимостью его сопротивления от направления внешнего поля.
Если направления внешнего и контактного полей противоположны, то основные носители тока втягиваются в контактный слой из объема полупроводника; толщина контактного слоя, обедненного основными носителями тока, и его сопротивление уменьшаются. В этом направлении, называемом пропускным, электрический ток может проходить через контакт металл — полупроводник. Если внешнее поле совпадает по знаку с контактным, то основные носители тока будут перемещаться от границы с металлом; толщина обедненного слоя возрастает, возрастает и его сопротивление. Очевидно, что в этом случае ток через контакт отсутствует, выпрямитель заперт — это запорное направление. Для запирающего слоя на границе металла с полупроводником n-типа (АМ>А) пропускным является направление тока из металла в полупроводник, а для запирающего слоя на границе металла с полупроводником р-типа. (АМ < А) — из полупроводника в металл.

§ 249. Контакт электронного и дырочного
полупроводников (р-п-переход)

Граница соприкосновения двух полупроводников, один из которых имеет электронную, а другой — дырочную проводимость, называется электронно-дырочным переходом (или p-n-нереходом). Эти переходы имеют большое практическое значение, являясь основой работы многих полупроводниковых приборов. p-n-Переход нельзя осуществить просто механическим соединением двух полупроводников. Обычно области раз личной проводимости создают либо при выращивании кристаллов, либо при соответствующей обработке кристаллов. Например, на кристалл германия n-типа накладывается индиевая «таблетка» (рис. 335, а). Эта система нагревается примерно при 500° С в вакууме или в атмосфере инертного газа; атомы индия диффундируют на некоторую глубину в германий. Затем расплав медленно охлаждают. Так как германий, содержащий индий, обладает дырочной проводимостью, то на границе закристаллизовавшегося расплава и германия n-типа образуется p-n-переход (рис. 335, б).





Рис. 335

Рассмотрим физические процессы, происходящие в p-n-переходе (рис. 336).

Рис. 336

Пусть донорный полупроводник (работа выхода — Аn, уровень Ферми — ЕFn) приводится в контакт (рис. 336,б) с акцепторным полупроводником (работа выхода — Ар, уровень Ферми — ЕFp). Электроны из n-полупроводника, где их концентрация выше, будут диффундировать в p-полупроводник, где их концентрация ниже. Диффузия же дырок происходит в обратном направлении — в направлении р®n.
В n-полупроводнике из-за ухода электронов вблизи границы остается нескомпенсированный положительный объемный заряд неподвижных ионизованных донорных атомов. В n-полупроводнике из-за ухода дырок вблизи границы образуется отрицательный объемный заряд неподвижных ионизованных акцепторов (рис. 336, а). Эти объемные заряды образуют у границы двойной электрический слой, поле которого, направленное от n-области к p-области, препятствует дальнейшему переходу электронов в направлении n®р и дырок в направлении р®n. Если концентрации доноров и акцепторов в полупроводниках n- и р-типа одинаковы, то толщины слоев d1 и d2 (рис. 336, в), в которых локализуются неподвижные заряды, равны (d1 = d2).
При определенной толщине p-n-перехода наступает равновесное состояние, характеризуемое выравниванием уровней Ферми для обоих полупроводников (рис. 336, в). В области p-n-перехода энергетические зоны искривляются, в результате чего возникают потенциальные барьеры как для электронов, так и для дырок. Высота потенциаль ного барьера еj определяется первоначальной разностью положений уровня Ферми в обоих полупроводниках. Все энергетические уровни акцепторного полупроводника подняты относительно уровней донорного полупроводника на высоту, равную еj, причем подъем происходит на толщине двойного слоя d.
Толщина d слоя p-n-перехода в полупроводниках составляет примерно
10-б— 10-7 м, а контактная разность потенциалов — десятые доли вольт. Носители тока способны преодолеть такую разность потенциалов лишь при температуре в несколько тысяч градусов, т. е. при обычных температурах равновесный контактный слой является запирающим (характеризуется повышенным сопротивлением).
Сопротивление запирающего слоя можно изменить с помощью внешнего электрического поля. Если приложенное к p-n-переходу внешнее электрическое поле направлено от n-полупроводника к p-полупроводнику (рис. 337, а), т. е. совпадает с полем контактного слоя, то оно вызывает движение электронов в n-полупроводнике и дырок в p-полупроводнике от границы р-n-перехода в противоположные стороны.

Рис. 337

В результате запирающий слой расширится и его сопротивление возрастет. Направление внешнего поля, расширяющего запирающий слой, называется запирающим (обратным). В этом направлении электрический ток через p-n-переход практически не проходит. Ток в запирающем слое в запирающем направлении образуется лишь за счет неосновных носителей тока (электронов в p-полупроводнике и дырок в n-полупроводнике).
Если приложенное к p-n-переходу внешнее электрическое поле направлено противоположно полю контактного слоя (рис. 337, 6), то оно вызывает движение электронов в n-полупроводнике и дырок в p-полупроводнике к границе p-n-перехода навстречу друг другу. В этой области они рекомбинируют, толщина контактного слоя и его сопротивление уменьшаются. Следовательно, в этом направлении электрический ток проходит сквозь p-n-переход в направлении от p-полупроводника к n-полупроводнику; оно называется пропускным (прямым).
Таким образом, p-n-переход (подобно на контакте металл — полупроводник) об ладает односторонней (вентильной) проводимостью.
На рис. 338 представлена вольт-амперная характеристика p-n-перехода. Как уже указывалось, при пропускном (прямом) напряжении внешнее электрическое поле способствует движению основных носителей тока к границе p-n-перехода (см. рис. 337, б). В результате толщина контактного слоя уменьшается. Соответственно уменьшается и сопротивление перехода (тем сильнее, чем больше напряжение), а сила тока становится большой (правая ветвь на рис. 338). Это направление тока называется прямым.

Рис. 338

При запирающем (обратном) напряжении внешнее электрическое поле препятству ет движению основных носителей тока к границе p-n-перехода (см. рис. 337, а) и способствует движению неосновных носителей тока, концентрация которых в полупроводниках невелика. Это приводит к увеличению толщины контактного слоя, обедненного основными носителями тока. Соответственно увеличивается и сопротивление перехода. Поэтому в данном случае через p-n-переход протекает только небольшой ток (он называется обратным), полностью обусловленный неосновными носителями тока (левая ветвь рис. 338). Быстрое возрастание этого тока означает пробой контактного слоя и его разрушение. При включении в цепь переменного тока p-n-переходы действуют как выпрямители.

§ 250. Полупроводниковые диоды и триоды
(транзисторы)

Односторонняя проводимость контактов двух полупроводников (или металла с полу проводником) используется для выпрямления в преобразования переменных токов. Если имеется один электронно-дырочный переход, то его действие аналогично действию двухэлепродной лампы — диода (см. § 105). Поэтому полупроводниковое устройство, содержащее одни р-n-:переход, называется полупроводниковым (красталлическим) диодом. Полупроводниковые диоды по конструкции делятся на точечные и плоскостные.
В качестве примера рассмотрим точечный германиевый диод (рис. 339), в котором тонкая вольфрамовая проволока 1 прижимается к n-германию 2 острием, покрытым алюминием. Если через диод в прямом направлении пропустить кратковременный импульс тока, то при этом резко повышается диффузия А1 в Ое и образуется слой германия, обогащенный алюминием и обладающий p-проводимостью. На границе этого слоя образуется p-n-переход, обладающий высоким коэффициентом выпрямления. Благодаря малой емкости контактного слоя точечные диоды применяются в качестве детекторов (выпрямителей) высокочастотных колебаний вплоть до сантиметрового диапазона длин волн.



Рис. 339

Принципиальная схема плоскостного меднозакисного (купроксного) выпрямителя дана на рис. 340. На медную пластину с помощью химической обработки наращивается слой закиси меди Сu2О, который покрывается слоем серебра. Серебряный электрод служит только для включения выпрямителя в цепь. Часть слоя Cu2O, прилегающая к меди и обогащенная ею, обладает электронной проводимостью, а часть слоя Сu2О, прилегающая к Ag и обогащенная (в процессе изготовления выпрямителя) кислородом, — дырочной проводимостью. Таким образом, в толще закиси меди образуется запирающий слой с пропускным направлением тока от Сu2О к Сu (р®n).


Рис. 340

Технология изготовления германиевого плоскостного диода описана в § 249 (см. рис. 325). Распространенными являются также селеновые диоды и диоды на основе арсенида галлия и карбида кремния. Рассмотренные диоды обладают рядом преимуществ по сравнению с электронными лампами (малые габаритные размеры, высокие к.п.д. и срок службы, постоянная готовность к работе и т. д.), но они очень чувст вительны к температуре, поэтому интервал их рабочих температур ограничен (от -70 до + 120°С). p-n-Переходы обладают не только прекрасными выпрямляющими свойствами, но могут быть использованы также для усиления, а если в схему ввести обратную связь, то и для генерирования электрических колебаний. Приборы, предназначенные для этих целей, получили название полупроводниковых триодов или транзисторов (первый транзистор создан в 1949 г. американскими физиками Д. Бардином, У. Брат-теином и У. Шокли; Нобелевская премия 1956 г.).
Для изготовления транзисторов используются германий и кремний, так как они характеризуются большой механической прочностью, химической устойчивостью и большей, чем в других полупроводниках, подвижностью носителей тока. Полупроводниковые триоды делятся на точечные и плоскостные. Первые значительно усиливают напряжение, но их выходные мощности малы из-за опасности перегрева (например, верхний предел рабочей температуры точечного германиевого триода лежит в пределах 50—80°Q. Плоскостные триоды являются более мощными. Они могут быть типa р-n-р и типа n-р-n в зависимости от чередования областей с различной проводимостью.
Для примера рассмотрим принцип работы плоскостного триода р-n-р, т. е. триода на основе n-полупроводника (рис. 341).


Рис. 341
Рабочие «электроды» триода, которыми являются база (средняя часть транзистора), эмиттер и коллектор (прилегающие к базе с обеих сторон области с иным типом проводимости), включаются в схему с помощью невыпрямляющих контактов — металлических проводников. Между эмиттером и базой прикладывается постоянное смещающее напряжение в прямом направлении, а между базой и коллектором — постоянное смещающее напряжение в обратном направле нии. Усиливаемое переменное напряжение подается на входное сопротивление Rвх, а усиленное — снимается с выходного сопротивления Rвых.
Протекание тока в цепи эмиттера обусловлено в основном движением дырок (они являются основными носителями тока) и сопровождается их «впрыскиванием» — инжекцией — в область базы. Проникшие в базу дырки диффундируют по направлению к коллектору, причем при небольшой толщине базы значительная часть инжектированных дырок достигает коллектора. Здесь дырки захватываются полем, действующим внутри перехода (притягиваются к отрицательно заряженному коллектору), вследствие чего изменяется ток коллектора. Следовательно, всякое изменение тока в цепи эмиттера вызывает изменение тока в цепи коллектора.
Прикладывая между эмиттером и базой переменное напряжение, получим в цепи коллектора переменный ток, а на выходном сопротивлении — переменное напряжение Величина усиления зависит от свойств р-n-переходов, нагрузочных сопротивлений и напряжения батареи Бк. Обычно Rвых >> Rвх поэтому Uвых значительно превышает входное напряжение UK (усиление может достигать 10 000). Так как мощность переменного тока, выделяемая в Rвых может быть больше, чем расходуемая в цепи эмиттера, то транзистор дает и усиление мощности. Эта усиленная мощность появляется за счет источника тока, включенного в цепь коллектора.
Из рассмотренного следует, что транзистор, подобно электронной лампе, дает усиление и напряжения и мощности. Если в лампе анодный ток управляется напряжением на сетке, то в транзисторе ток коллектора, соответствующий анодному току лампы, управляется напряжением на базе.
Принцип работы транзистора n-р-n-типа аналогичен рассмотренному выше, но роль дырок играют электроны. Существуют и другие типы транзисторов, так же как и другие схемы их включения. Благодаря своим преимуществам перед электронными лампами (малые габаритные размеры, большие к.п.д. и срок службы, отсутствие накаливаемого катода (поэтому потребление меньшей мощности), отсутствие необходимости в вакууме и т. д.) транзистор совершил революцию в области электронных средств связи и обеспечил создание быстродействующих ЭВМ с большим объемом памяти.

Задачи

31.1. Германиевый образец нагревают от 0 до 17°С. Принимая ширину запрещенной зоны кремния 0,72 эВ, определить, во сколько раз возрастет его удельная проводимость. [В 2,45 раза]

31.2. В чистый кремний введена небольшая примесь бора. Пользуясь Периодической системой Д. И. Менделеева, определить и объяснить тип проводимости примесного кремния.

31.3. Определить длину волны, при которой в примесном полупроводнике еще возбуждается фотопроводимость.






































ЭЛЕМЕНТЫ ФИЗИКИ
АТОМНОГО ЯДРА
И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Глава 32
Элементы физики атомного ядра

§ 251. Размер, состав и заряд атомного ядра.
Массовое и зарядовое числа

Э. Резерфорд, исследуя прохождение ос-частиц с энергией в несколько мегаэлектрон-вольт через тонкие пленки золота (см. § 208), пришел к выводу о том, что атом состоит из положительно заряженного ядра и окружающих его электронов. Проанализировав эти опыты, Резерфорд также показал, что атомные ядра имеют размеры примерно 10-14 —10-15 м (линейные размеры атома примерно 10˜10 м).
Атомное ядро состоит из элементарных частиц — протонов и нейтронов (протон-но-нейтронная модель ядра была предложена российским физиком Д. Д. Иваненко (р. 1904), а впоследствии развита В. Гейзенбергом).
Протон (р) имеет положительный заряд, равный заряду электрона, и массу покоя mp = 1,6726Ч 10- 27 кг »1836 те, где те — масса электрона. Нейтрон (n) — нейтральная частица с массой покоя тп—1,6749Ч 10- 27 кг »1839 те. Протоны и нейтроны называются нуклонами (от лат. nucleus — ядро). Общее число нуклонов в атомном ядре называется массовым числом А.
Атомное ядро характеризуется зарядом Ze, где Z — зарядовое число ядра, равное числу протонов в ядре и совпадающее с порядковым номером химического элемента в Периодической системе элементов Менделеева. Известные в настоящее время 107 элементов таблицы Менделеева имеют зарядовые числа ядер от Z= 1 до Z= 107.
Ядро обозначается тем же символом, что и нейтральный атом: AZХ, где X — символ химического элемента, Z — атомный номер (число протонов в ядре), А — массовое число (число нуклонов в ядре).
Сейчас протонно-нейтронная модель ядра не вызывает сомнений. Рассматривалась также гипотеза о протонно-электронном строении ядра, но она не выдержала экспериментальной проверки. Так, если придерживаться этой гипотезы, то массовое число А должно представлять собой число протонов в ядре, а разность между массовым числом и числом электронов должна быть равна зарядовому числу. Эта модель согласовывалась со значениями изотопных масс и зарядов, но противоречила значениям спинов и магнитных моментов ядер, энергии связи ядра и т. д. Кроме того, она оказалась несовместимой с соотношением неопределенностей (см. § 215). В результате гипотеза о протонно-электронном строении ядра была отвергнута.
Так как атом нейтрален, то заряд ядра определяет и число электронов в атоме. От числа же электронов зависит их распределение по состояниям в атоме, от которого, в свою очередь, зависят химические свойства атома. Следовательно, заряд ядра определяет специфику данного химического элемента, т. е. определяет число электронов в атоме, конфигурацию их электронных оболочек, величину и характер внутри атомного электрического поля.
Ядра с одинаковыми 2, но разными А (т. е. с разными числами нейтронов N=A—Z) называются изотопами, а ядра с одинаковыми А, но разными Z— изобарами. Например, водород (Z=1) имеет три изотопа: 11Н — протий (Z=1, N=0), 21Н — дейтерий (Z=1, N=1), 31Н —тритий (Z=1, N=2), олово — десять, и т. д. В подавляющем большинстве случаев изотопы одного и того же химического элемента обладают одинаковыми химическими и почти одинаковыми физическими свойствами (исключение составляют, например, изотопы водорода), определяющимися в основном структурой электронных оболочек, которая является одинаковой для всех изотопов данного элемента. Примером ядер-изобар могут служить ядра 104Be, 105Be, 106С. В настоящее время известно более 2500 ядер, отличающихся либо Z, либо А, либо тем и другим.
Радиус ядра задается эмпирической формулой
(251.1)
где R0=(1,3ё1,7) 10-15 м. Однако при употреблении этого понятия необходимо соблюдать осторожность (из-за его неоднозначности, например из-за размытости границы ядра). Из формулы (251.1) вытекает, что объем ядра пропорционален числу нуклонов в ядре. Следовательно, плотность ядерного вещества примерно одинакова для всех ядер (» 1017 кг/м3).

§ 252. Дефект массы и энергия связи ядра

Исследования показывают, что атомные ядра являются устойчивыми образованиями. Это означает, что в ядре между нуклонами существует определенная связь.
Массу ядер очень точно можно определить с помощью масс-спектрометров — из мерительных приборов, разделяющих с помощью электрических и магнитных полей пучки заряженных частиц (обычно ионов) с разными удельными зарядами Q/m. Macc-спектрометрические измерения показали, что масса ядра меньше, чем сумма масс составляющих его нуклонов. Но так как всякому изменению массы (см. § 40) должно соответствовать изменение энергии, то, следовательно, при образовании ядра должна выделяться определенная энергия. Из закона сохранения энергии вытекает и обратное: для разделения ядра на составные части необходимо затратить такое же количество энергии, которое выделяется при его образовании. Энергия, которую необходимо затратить, чтобы расщепить ядро на отдельные нуклоны, называется энергией связи ядра (см. § 40).
Согласно выражению (40.9), энергия связи нуклонов в ядре
(252.1)
где тр, тn, тя — соответственно массы протона, нейтрона и ядра. В таблицах обычно приводятся не массы т, ядер, а массы т атомов. Поэтому для энергии связи ядра пользуются формулой
(252.2)
где mн — масса атома водорода. Так как mн больше mp на величину mе, то первый член в квадратных скобках включает в себя массу Z электронов. Но так как масса атома m отличается от массы ядра mя как раз на массу Z электронов, то вычисления по формулам (252.1) и (252.2) приводят к одинаковым результатам. Величина

называется дефектом массы ядра. На эту величину уменьшается масса всех нуклонов при образовании из них атомного ядра.
Часто вместо энергии связи' рассматривают удельную энергию связи 8Еа — энер гию связи, отнесенную к одному нуклону. Она характеризует устойчивость (прочность) атомных ядер, т. е. чем больше dЕсв, тем устойчивее ядро. Удельная энергия связи зависит от массового числа А элемента (рис. 342). Для легких ядер (A Ј 12) удельная энергия связи круто возрастает до 6ё7 МэВ, претерпевая целый ряд скачков (например, для 21H dЕсв = 1,1 МэВ, для 24He - 7,1 МэВ, для 63Li — 5,3 МэВ), затем более медленно возрастает до максимальной величины 8,7 МэВ у элементов с A = 50ё60, а потом постепенно уменьшается у тяжелых элементов (например, для 23892U она составляет 7,6 МэВ). Отметим для сравнения, что энергия связи валентных электронов в атомах составляет примерно 10 эВ (в 10б! раз меньше).

Рис. 342

Уменьшение удельной энергии связи при переходе к тяжелым элементам объясняется тем, что с возрастанием числа протонов в ядре увеличивается и энергия их кулоновского отталкивания. Поэтому связь между нуклонами становится менее сильной, а сами ядра менее прочными.
Наиболее устойчивыми оказываются так называемые магические ядра, у которых число протонов или число нейтронов равно одному из магических чисел: 2, 8, 20,28, 50, 82, 126. Особенно стабильны дважды магические ядра, у которых магическими являются и число протонов, и число нейтронов (этих ядер насчитывается всего пять: 24He, 168O, 4020Ca, 4820Ca, 20882Ru.
Из рис. 342 следует, что наиболее устойчивыми с энергетической точки зрения являются ядра средней части таблицы Менделеева. Тяжелые и легкие ядра менее устойчивы. Это означает, что энергетически выгодны следующие процессы: 1) деление тяжелых ядер на более легкие; 2) слияние легких ядер друг с другом в более тяжелые. При обоих процессах выделяется огромное количество энергии; эти процессы в настоящее время осуществлены практически: реакции деления и термоядерные реакции.

§ 253. Спин ядра и его магнитный момент

Использование приборов высокой разрешающей способности и специальных источников возбуждения спектра позволило обнаружить сверхтонкую структуру спектральных линий. Бе существование В. Паули объяснил (1924) наличием у атомных ядер собственного момента импульса (спина) и магнитного момента.
Собственный момент импульса ядра — спин ядра — складывается из спинов нуклонов и из орбитальных моментов импульса нуклонов (моментов импульса, обусловленных движением нуклонов внутри ядра). Обе эти величины являются векторами,
поэтому спин ядра представляет их векторную сумму. Спин ядра квантуется по закону

где I — спиновое ядерное квантовое «пело (его часто называют просто спином ядра), которое принимает целые или полуцелые значения 0, ?, 1, 3/2 ... . Ядра с четными А имеют целые I, с нечетными — полуцелые I.
Атомное ядро кроме спина обладает магнитным моментом pmя. Магнитный момент ядра связан со спином ядра (см. аналогичное выражение (131.5) для электрона): pmя = gяLя, где gя — коэффициент пропорциональности, называемый ядерным гиромагнитным отношением.
Единицей магнитных моментов ядер служит ядерный магнетон
(253.1)
где тр — масса протона (ср. эту формулу с магнетоном Бора (§ 131)). Ядерный магнетон в mp/ me раз меньше магнетона Бора, поэтому магнитные свойства атомов определяются в основном магнитными свойствами его электронов.
В случае эффекта Зеемана (см. § 223) при помещении атома в магнитное поле наблюдается расщепление энергетических уровней и спектральных линий (тонкая структура), обусловленное сшш-орбитальным взаимодействием электронов. Во внешнем магнитном поле также наблюдается расщепление уровней энергии атома на близко расположенные подуровни (сверхтонкая структура), обусловленное взаимодействием магнитного момента ядра с магнитным полем электронов в атоме.
Магнитные моменты ядер могут, таким образом, определяться спектроскопическим методом по сверхтонкой структуре спектральных линий. Однако магнитные моменты ядер примерно на три порядка меньше магнитных моментов электронов (см. (253.1) и (§ 131)), поэтому расщепление спектральных линий, соответствующее сверхтонкой структуре, значительно меньше расщепления за счет взаимодействия между спиновым и орбитальным моментами электрона (тонкая структура). Таким образом, из-за малости эффекта, даже при использовании спектральных приборов очень большой разрешающей способности, точность этого метода невелика. Поэтому были разработаны более точные (не оптические) методы определения магнитных моментов ядер, одним из которых является метод ядерного магнитного резонанса.
Явление ядерного магнитного резонанса заключается в следующем: если на вещест во, находящееся в сильном постоянном магнитном поле, действовать слабым перемен ным радиочастотным магнитным полем, то при частотах, соответствующих частотам переходов между ядерными подуровнями, возникает резкий (резонансный) максимум поглощения. Ядерный магнитный резонанс обусловлен происходящими под влиянием переменного магнитного поля квантовыми переходами между ядерными подуровнями. Точность метода задается точностью измерения напряженности постоянного магнитного поля и резонансной частоты, так как по их значениям вычисляются магнитные моменты ядер. Так как для измерения этих величин применяются прецизионные методы, то pmя можно определять с высокой точностью (до шести знаков).
Метод ядерного магнитного резонанса позволяет наблюдать ядерный резонанс на ядрах, обладающих магнитным моментом порядка 0,1mя. Количество вещества, необходимое для измерений, должно составлять 10- 3 —10 г (в зависимости от значения pmя,). Измерение значений магнитных моментов ядер часто сводится к сравнению резонансных частот исследуемых ядер с резонансной частотой протонов, что позволяет освободиться от точной калибровки магнитного поля, которая является довольно трудоемкой.

§ 254. Ядерные силы. Модели ядра

Между составляющими ядро нуклонами действуют особые, специфические для ядра силы, значительно превышающие кулоновские силы отталкивания между протонами. Они называются ядервымн силами.
С помощью экспериментальных данных по рассеянию нуклонов на ядрах, ядерным превращениям и т. д. доказано, что ядерные силы намного превышают гравитационные, электрические и магнитные взаимодействия и не сводятся к ним. Ядерные силы относятся к классу так называемых сильных взаимодействий.
Перечислим основные свойства ядерных сил:
ядерные силы являются силами притяжения;
ядерные силы являются короткодействующими — их действие проявляется только на расстояниях примерно 10- 15 м. При увеличении расстояния между нуклонами ядерные силы быстро уменьшаются до нуля, а при расстояниях, меньших их радиуса действия, оказываются примерно в 100 раз больше кулоновских сил, действующих между протонами на том же расстоянии;
ядерным силам свойственна зарядовая независимость: ядерные силы, действующие между двумя протонами, или двумя нейтронами, или, наконец, между протоном и нейтроном, одинаковы по величине. Отсюда следует, что ядерные силы имеют неэлектрическую природу;
ядерным силам свойственно насыщение, т. е. каждый нуклон в ядре взаимодействует только с ограниченным числом ближайших к нему нуклонов. Насыщение проявляется в том, что удельная энергия связи нуклонов в ядре (если не учитывать легкие ядра) при увеличении числа нуклонов не растет, а остается приблизительно постоянной;
ядерные силы зависят от взаимной ориентации спинов взаимодействующих нуклонов. Например, протон и нейтрон образуют дейтрон (ядро изотопа 21H) только при условии параллельной ориентации их спинов;
ядерные силы не являются центральными, т. е. действующими по линии, соединяющей центры взаимодействующих нуклонов.
Сложный характер ядерных сил и трудность точного решения уравнений движе ния всех нуклонов ядра (ядро с массовым числом А представляет собой систему из А тел) не позволили до настоящего времени разработать единую последовательную теорию атомного ядра. Поэтому на данной стадии прибегают к рассмотрению приближенных ядерных моделей, в которых ядро заменяется некоторой модельной системой, довольно хорошо описывающей только определенные свойства ядра и допускающей более или менее простую математическую трактовку. Из большого числа моделей, каждая из которых обязательно использует подобранные произвольные параметры, согласующиеся с экспериментом, рассмотрим две: капельную и оболочечную.
1. Капельная модель ядра (1936; Н. Бор и Я. И. Френкель). Капельная модель ядра является первой моделью. Она основана на аналогии между поведением нуклонов в ядре и поведением молекул в капле жидкости. Так, в обоих случаях силы, действующие между составными частицами — молекулами в жидкости и нуклонами в ядре, — являются короткодействующими и им свойственно насыщение. Для капли жидкости при данных внешних условиях характерна постоянная плотность ее вещества. Ядра же характеризуются практически постоянной удельной энергией связи и постоянной плотностью, не зависящей от числа нуклонов в ядре. Наконец, объем капли, так же как и объем ядра (см. (251.1)), пропорционален числу частиц. Существенное отличие ядра от капли жидкости в этой модели заключается в том, что она трактует ядро как каплю электрически заряженной несжимаемой жидкости (с плотностью, равной ядерной), подчиняющуюся законам квантовой механики. Капельная модель ядра позволила получить полуэмпирическую формулу для энергии связи нуклонов в ядре, объяснила механизм ядерных реакций и особенно реакции деления ядер. Однако эта модель не смогла, например, объяснить повышенную устойчивость ядер, содержащих магические числа протонов и нейтронов.
2. Оболочечван модель ядра (1949—1950; американский физик М. Гепперт-Майер (1906—1975) и немецкий физик X. Иенсен (1907—1973)). Оболочечная модель предполагает распределение нуклонов в ядре по дискретным энергетическим уровням (оболочкам), заполняемым нуклонами согласно принципу Паули, и связывает устойчивость ядер с заполнением этих уровней. Считается, что ядра с полностью заполненными оболочками являются наиболее устойчивыми. Такие особо устойчивые (магические) ядра действительно существуют (см. § 252).
Оболочечная модель ядра позволила объяснить спины и магнитные моменты ядер, различную устойчивость атомных ядер, а также периодичность изменений их свойств. Эта модель особенно хорошо применима для описания легких и средних ядер, а также для ядер, находящихся в основном (невозбужденном) состоянии.
По мере дальнейшего накопления экспериментальных данных о свойствах атомных ядер появлялись все новые факты, не укладывающиеся в рамки описанных моделей. Так возникли обобщенная модель ядра (синтез капельной и оболочечной моделей), оптическая модель ядра (объясняет взаимодействие ядер с налетающими частицами) и другие модели.

§ 255. Радиоактивное излучение и его виды

Французский физик А. Беккерель (1852—1908) в 1896 г. при изучении люминесценции солей урана случайно обнаружил самопроизвольное испускание ими излучения неизвестной природы, которое действовало на фотопластинку, ионизировало воздух, проникало сквозь тонкие металлические пластинки, вызывало люминесценцию ряда веществ. Продолжая исследование этого явления, супруги Кюри — Мария (1867—1934) и Пьер — обнаружили, что беккерелевское излучение свойственно не только урану, но и многим другим тяжелым элементам, таким, как торий и актиний. Они показали также, что урановая смоляная обманка (руда, из которой добывается металлический уран) испускает излучение, интенсивность которого во много раз превышает интенсивность излучения урана. Таким образом удалось выделать два новых элемента — носи теля беккерелевского излучения: полоний 21084Рo и радий 22688Ra.
Обнаруженное излучение было названо радиоактивным излучением, а само явление — испускание радиоактивного излучения — радиоактивностью.
Дальнейшие опыты показали, что на характер радиоактивного излучения препарата не оказывают влияния вид химического соединения, агрегатное состояние, механическое давление, температура, электрические и магнитные поля, т. е. все те воздействия, которые могли бы привести к изменению состояния электронной оболочки атома. Следовательно, радиоактивные свойства элемента обусловлены лишь структурой его ядра.
В настоящее время под радиоактивностью понимают способность некоторых атомных ядер самопроизвольно (спонтанно) превращаться в другие ядра с испусканием различных видов радиоактивных излучений и элементарных частиц. Радиоактивность подразделяется на естественную (наблюдается у неустойчивых изотопов, существующих в природе) и искусственную (наблюдается у изотопов, полученных посредством ядерных реакций). Принципиального различия между этими двумя типами радиоактивности нет, так как законы радиоактивного превращения в обоиx случаях одинаковы.
Радиоактивное излучение бывает трех типов: a-, b- и gизлучение. Подробное их исследование позволило выяснить природу и основные свойства.
a-Излучение отклоняется электрическим и магнитным полями, обладает высокой ионизирующей способностью и малой проникающей способностью (например, погло щаются слоем алюминия толщиной примерно 0,05 мм). a-Излучение представляет собой поток ядер гелия; заряд a-частицы равен + 2е, а масса совпадает с массой ядра изотопа гелия 24He. По отклонению a-частиц в электрическом и магнитном полях был определен их удельный заряд Q/ma, значение которого подтвердило правильность представлений об их природе.
b-Излучение отклоняется электрическим и магнитным полями; его ионизирующая способность значительно меньше (примерно на два порядка), а проникающая способность гораздо больше (поглощается слоем алюминия толщиной примерно 2 мм), чем у a-частнц. b-Излучение представляет собой поток быстрых электронов (это вытекает из определения их удельного заряда).
Поглощение потока электронов с одинаковыми скоростями в однородном веществе подчиняется экспоненциальному закону N = N0e-mx , где N0 и N — число электронов на входе и выходе слоя вещества толщиной х, m — коэффициент поглощения. b-Излучение сильно рассеивается в веществе, поэтому m зависит не только от вещества, но и от размеров и формы тел, на которые b-излучение падает.
g-Излучение не отклоняется электрическим и магнитным полями, обладает относительно слабой ионизирующей способностью и очень большой проникающей способностью (например, проходит через слой свинца толщиной 5 см), при прохождении через кристаллы обнаруживает дифракцию. g-Излучение представляет собой коротковолновое электромагнитное излучение с чрезвычайно малой длиной волны l < 10- 10 м и вследствие этого — ярко выраженными корпускулярными свойствами, т. е. является потоком частиц —g-квантов (фотонов).

§ 256. Закон радиоактивного распада.
Правила смещения

Под радиоактивным распадом, или просто распадом, понимают естественное радиоактивное превращение ядер, происходящее самопроизвольно. Атомное ядро, испытывающее радиоактивный распад, называется материнским, возникающее ядро — дочерним. Теория радиоактивного распада строится на предположении о том, что радиоактивный распад является спонтанным процессом, подчиняющимся законам статистики. Так как отдельные радиоактивные ядра распадаются независимо друг от друга, то можно считать, что число ядер dN, распавшихся в среднем за интервал времени от t до t+dt, пропорционально промежутку времени dt и числу N нераспавшихся ядер к моменту времени t:
(256.1)
где l — постоянная для данного радиоактивного вещества величина, называемая постоянной радиоактивного распада; знак минус указывает, что общее число радиоактивных ядер в процессе распада уменьшается.
Разделив переменные и интегрируя:

получим
(256.2)
где N0 — начальное число нераспавшихся ядер (в момент времени t=0), N — число нераспавшихся ядер в момент времени t. Формула (256.2) выражает закон радиоактивного распада, согласно которому число нераспавшихся ядер убывает со временем по экспоненциальному закону.
Интенсивность процесса радиоактивного распада характеризуют две величины: период полураспада T1/2 и среднее время жизни m радиоактивного ядра. Период полураспада T1/2 — время, за которое исходное число радиоактивных ядер в среднем уменьшается вдвое. Тогда, согласно (256.2),

Периоды полураспада для естественно-радиоактивных элементов колеблются от десятимиллионных долей секунды до многих миллиардов лет.
Суммарная продолжительность жизни dN ядер равна t|dN| = lNtdt. Проинтегрировав это выражение по всем возможным t (т. е. от 0 до Ґ) и разделив на начальное число ядер N0, получим среднее время жизни t радиоактивного ядра:

(учтено (256.2)). Таким образом, среднее время жизни т радиоактивного ядра есть величина, обратная постоянной радиоактивного распада l
Активностью А нуклида (общее название атомных ядер, отличающихся числом протонов Z и нейтронов N) в радиоактивном источнике называется число распадов, происходящих с ядрами образца в 1 с:
(256.3)
Единица активности в СИ — беккерель (Бк): 1 Бк — активность нуклида, при которой за 1 с происходит один акт распада. До сих пор в ядерной физике применяется и внесистемная единица активности нуклида в радиоактивном источнике — кюри (Ки): 1 Ки = 3,7Ч1010 Бк.
Радиоактивный распад происходит в соответствии с так называемыми правилами смещения, позволяющими установить, какое ядро возникает в результате распада данного материнского ядра. Правила смещения:

где AZX — материнское ядро, Y — символ дочернего ядра, 24He — ядро гелия (a-частица), 0-1е — символическое обозначение электрона (заряд его равен —1, а массовое число — нулю). Правила смещения являются ничем иным, как следствием двух законов, выполняющихся при радиоактивных распадах, — сохранения электрического заряда и сохранения массового числа: сумма зарядов (массовых чисел) возникающих ядер и частиц равна заряду (массовому числу) исходного ядра.
Возникающие в результате радиоактивного распада ядра могут быть, в свою очередь, радиоактивными. Это приводит к возникновению цепочки, или ряда, радиоактивных превращений, заканчивающихся стабильным элементом. Совокупность элементов, образующих такую цепочку, называется радиоактивным семейством.


Из правил смещения (256.4) и (256.5) вытекает, что массовое число при a-распаде уменьшается на 4, а при b-распаде не меняется. Поэтому для всех ядер одного и того же радиоактивного семейства остаток от деления массового числа на 4 одинаков. Таким образом, существует четыре различных радиоактивных семейства, для каждого из которых массовые числа задаются одной из следующих формул:

где n — целое положительное число. Семейства называются по наиболее долгоживущсму (с наибольшим периодом полураспада) «родоначальнику»: семейства тория (от 23290Th), нептуния (от 23793Np), урана (от 23892U) и актиния (от23589Ас). Конечными нуклидами соответственно являются 20882Pb, 20983Bi, 20682Pb, 20782Pb, т. е. единственное семейство нептуния (искусственно-радиоактивные ядра) заканчивается нуклидом Bi, а все остальные (естественно-радиоактивные ядра) — нуклидами РЬ.

§ 257. Закономерности a-распада

В настоящее время известно более двухсот a-активных ядер, главным образом тяжелых (Х>200, Z>82). Только небольшая группа a-активных ядер приходится на область с А = 140ё160 (редкие земли). a-Распад подчиняется правилу смещения (256.4). Примером a-распада служит распад изотопа урана 238 U с образованием Th:

Скорости вылетающих при распаде a-частиц очень велики и колеблются для разных ядер в пределах от 1,4Ч107 до 2Ч107 м/с, что соответствует энергиям от 4 до 8,8 МэВ. Согласно современным представлениям, ос-частицы образуются в момент радиоактивного распада при встрече движущихся внутри ядра двух протонов и двух нейтронов.
a-Частицы, испускаемые конкретным ядром, обладают, как правило, определенной энергией. Более тонкие измерения, однако, показали, что энергетический спектр a-частиц, испускаемых данным радиоактивным элементом, обнаруживает «тонкую структуру», т. е. испускается несколько групп a-частиц, причем в пределах каждой группы их энергии практически постоянны. Дискретный спектр a-частиц свидетельствует о том, что атомные ядра обладают дискретными энергетическими уровнями.
Для a-распада характерна сильная зависимость между периодом полураспада T1/2 и энергией Е вылетающих частиц. Эта взаимосвязь определяется эмпирическим законом Гейгера — Нэттола (1912)* [* Д. Нэттол (1890—1958) — английский физик; X. Гейгер (1882—1945) — немецкий физик.]
, который обычно выражают в виде зависимости между пробегом Ra (расстоянием, проходимым частицей в веществе до ее полной остановки) a-частиц в воздухе и постоянной радиоактивного распада l:
(257.1)
где А и В — эмпирические константы, l = (ln2)/ T1/2. Согласно (257.1), чем меньше период полураспада радиоактивного элемента, тем больше пробег, а следовательно, и энергия испускаемых им a-частиц. Пробег a-частиц в воздухе (при нормальных условиях) составляет несколько сантиметров, в более плотных средах он гораздо меньше, составляя сотые доли миллиметра (a-частицы можно задержать обычным листом бумаги).
Опыты Резерфорда по рассеянию a-частиц на ядрах урана показали, что a-частицы вплоть до энергии 8,8 МэВ испытывают на ядрах резерфордовское рассеяние, т. е. силы, действующие на a-частицы со стороны ядер, описываются законом Кулона. Подобный характер рассеяния a-частиц указывает на то, что они еще не вступают в область действия ядерных сил, т. е. можно сделать вывод, что ядро окружено потенциальным барьером, высота которого не меньше 8,8 МэВ. С другой стороны, a-частицы, испускаемые ураном, имеют энергию 4,2 МэВ. Следовательно, a-частицы вылетают из a-радиоактивного ядра с энергией, заметно меньшей высоты потенциального барьера. Классическая механика этот результат объяснить не могла.
Объяснение a-распада дано квантовой механикой, согласно которой вылет a-части цы из ядра возможен благодаря туннельному эффекту (см. § 221) — проникновению a-частицы сквозь потенциальный барьер. Всегда имеется отличная от нуля вероятность того, что частица с энергией, меньшей высоты потенциального барьера, пройдет сквозь него, т. е., действительно, из a-радиоактивного ядра a-частицы могут вылетать с энергией, меньшей высоты потенциального барьера. Этот эффект целиком обусловлен волновой природой a-частиц.
Вероятность прохождения a-частицы сквозь потенциальный барьер определяется его формой и вычисляется на основе уравнения Шредингера. В простейшем случае потенциального барьера с прямоугольными вертикальными стенками (см. рис. 298, а) коэффициент прозрачности, определяющий вероятность прохождения сквозь него, определяется рассмотренной ранее формулой (221.7):

Анализируя это выражение, видим, что коэффициент прозрачности D тем больше (следовательно, тем меньше период полураспада), чем меньший по высоте (U) и ширине (l) барьер находится на пути a-частицы. Кроме того, при одной и той же потенциальной кривой барьер на пути частицы тем меньше, чем больше ее энергия Е. Таким образом качественно подтверждается закон Гейгера — Нэттола (см. (257.1)).

§ 258. b? -Распад. Нейтрино

Явление b?-распада (в дальнейшем будет показано, что существует и b+-распад) подчиняется правилу смещения (256.5)

и связано с выбросом электрона. Пришлось преодолеть целый ряд трудностей с трактовкой b?-распада.
Во-первых, необходимо было обосновать происхождение электронов, выбрасываемых в процессе b?-распада. Протонно-нейтронное строение ядра исключает возможность вылета электрона из ядра, поскольку в ядре электронов нет. Предположение же, что электроны вылетают не из ядра, а из электронной оболочки, несостоятельно, поскольку тогда должно было бы наблюдаться оптическое или рентгеновское излучение, что не подтверждают эксперименты.
Во-вторых, необходимо было объяснить непрерывность энергетического спектра испускаемых электронов (типичная для всех изотопов кривая распределения b?-частиц по энергиям приведена на рис. 343).

Рис. 343

Каким же образом b?-активные ядра, обладающие до и после распада вполне определенными энергиями, могут выбрасывать электроны со значениями энергии от нуля до некоторого максимального Emax? T.е. энергетический спектр испускаемых электронов является непрерывным? Гипотеза о том, что при b?-распаде электроны покидают ядро со строго определенными энергиями, но в результате каких-то вторичных взаимодействий теряют ту или иную долю своей энергии, так что их первоначальный дискретный спектр превращается в непрерывный, была опровергнута прямыми калориметрическими опытами. Так как максимальная энергия Emax определяется разностью масс материнского и дочернего ядер, то распады, при которых энергия электрона E < Emax, как бы протекают с нарушением закона сохранения энергии. Н. Бор даже пытался обосновать это нарушение, высказывая предположение, что закон сохранения энергии носит статистический характер и выполняется лишь в среднем для большого числа элементарных процессов. Отсюда видно, насколько принципиально важно было разрешить это затруднение.
В-третьих, необходимо было разобраться с несохранением спина при b? -распаде. При b? -распаде число нуклонов в ядре не изменяется (так как не изменяется массовое число А), поэтому не должен изменяться и спин ядра, который равен целому числу при четном А и полуцелому при нечетном А. Однако выброс электрона, имеющего спин /2, должен изменить спин ядра на величину /2.
Последние два затруднения привели В. Паули к гипотезе (1931) о том, что при b?-распаде вместе с электроном испускается еще одна нейтральная частица — нейтрино. Нейтрино имеет нулевой заряд, спин 1/2 (в единицах ) и нулевую (а скорее < 10-4 me) массу покоя; обозначается .Впоследствии оказалось, что при b?-распаде испускается не нейтрино, а антнвейтрнно (античастица по отношению к нейтрино; обозначается ).
Гипотеза о существовании нейтрино позволила Э. Ферми создать теорию b?-распада (1934), которая в основном сохранила свое значение и в настоящее время, хотя экспериментально существование нейтрино было доказано более чем через 20 лет (1956). Столь длительные «поиски» нейтрино сопряжены с большими трудностями, обусловленными отсутствием у нейтрино электрического заряда и массы. Нейтрино — единственная частица, не участвующая ни в сильных, ни в электромагнитных взаимодействиях; единственный вид взаимодействий, в котором может принимать участие нейтрино, — слабое взаимодействие. Поэтому прямое наблюдение нейтрино весьма затруднительно. Ионизирующая способность нейтрино столь мала, что один акт ионизации в воздухе приходится на 500 км пути. Проникающая же способность нейтрино столь огромна (пробег нейтрино с энергией 1 МэВ в свинце составляет примерно 1018 м!), что затрудняет удержание этих частиц в приборах.
Для экспериментального выявления нейтрино (антинейтрино) применялся поэтому косвенный метод, основанный на том, что в реакциях (в том числе и с участием нейтрино) выполняется закон сохранения импульса. Таким образом, нейтрино было обнаружено при изучении отдачи атомных ядер при b?-распаде. Если при b?-распаде ядра вместе с электроном выбрасывается и антинейтрино, то векторная сумма трех импульсов — ядра отдачи, электрона и антинейтрино — должна быть равна нулю. Это действительно подтвердилось на опыте. Непосредственное обнаружение нейтрино стало возможным лишь значительно позднее, после появления мощных реакторов, позволяющих получать интенсивные потоки нейтрино.
Введение нейтрино (антинейтрино) позволило не только объяснить кажущееся несохранение спина, но и разобраться с вопросом непрерывности энергетического спектра выбрасываемых электронов. Сплошной спектр b? -частиц обусловлен распределением энергии между электронами и антинейтрино, причем сумма энергий обеих частиц равна Emax. В одних актах распада большую энергию получает антинейтрино, в других — электрон; в граничной точке кривой на рис. 343, где энергия электрона равна Emax вся энергия распада уносится электроном, а энергия антинейтрино равна нулю.
Наконец, рассмотрим вопрос о происхождении электронов при b?-распаде. Поскольку электрон не вылетает из ядра и не вырывается из оболочки атома, было сделано предположение, что b-электрон рождается в результате процессов, происходящих внутри ядра. Так как при b?-распаде число нуклонов в ядре не изменяется, a Z увеличивается на единицу (см. (265.5)), то единственной возможностью одновременного осуществления этих условий является превращение одного из нейтронов b?-активного ядра в протон с одновременным образованием электрона и вылетом антинейтрино:
(258.1)
В этом процессе выполняются законы сохранения электрических зарядов, импульса и массовых чисел. Кроме того, данное превращение энергетически возможно, так как масса покоя нейтрона превышает массу атома водорода, т. е. протона и электрона вместе взятых. Данной разности в массах соответствует энергия, равная 0,782 МэВ. За счет этой энергии может происходить самопроизвольное превращение нейтрона в протон; энергия распределяется между электроном и антинейтрино.
Если превращение нейтрона в протон энергетически выгодно и вообще возможно, то должен наблюдаться радиоактивный распад свободных нейтронов (т. е. нейтронов вне ядра). Обнаружение этого явления было бы подтверждением изложенной теории b?-распада. Действительно, в 1950 г. в потоках нейтронов большой интенсивности, возникающих в ядерных реакторах, был обнаружен радиоактивный распад свободных нейтронов, происходящий по схеме (258.1). Энергетический спектр возникающих при этом электронов соответствовал приведенному на рис. 343, а верхняя граница энергии электронов Emax оказалась равной рассчитанной выше (0,782 МэВ).

§ 259. Гамма-излучение и его свойства

Экспериментально установлено, что g-излучение (см. § 255) не является самостоятельным видом радиоактивности, а только сопровождает a- и b-распады и также возникает при ядерных реакциях, при торможении заряженных частиц, их распаде и т. д. g-Спектр является линейчатым. g-Спектр — это распределение числа g-квантов по энергиям (такое же толкование b-спектра дано в §258). Дискретность g-спектра имеет принципиальное значение, так как является доказательством дискретности энергетических состояний атомных ядер.
В настоящее время твердо установлено, что g-излучение испускается дочерним (а не материнским) ядром. Дочернее ядро в момент своего образования, оказываясь возбуж денным, за время примерно 10-13 — 10-14 с, значительно меньшее времени жизни возбужденного атома (примерно 10-8 с), переходит в основное состояние с испусканием g-излучения. Возвращаясь в основное состояние, возбужденное ядро может пройти через ряд промежуточных состояний, поэтому g-излучение одного и того же радиоактивного изотопа может содержать несколько групп g-квантов, отличающихся одна от другой своей энергией.
При g-излучении А и Z ядра не изменяются, поэтому оно не описывается никакими правилами смещения. g-Излучение большинства ядер является столь коротковолно вым, что его волновые свойства проявляются весьма слабо. Здесь на первый план выступают корпускулярные свойства, поэтому g-излучение рассматривают как поток частиц — g-квантов. При радиоактивных распадах различных ядер g-кванты имеют энергии от 10 кэВ до 5 МэВ.
Ядро, находящееся в возбужденном состоянии, может перейти в основное состояние не только при испускании g-кванта, но и при непосредственной передаче энергии возбуждения (без предварительного испускания g-кванта) одному из электронов того же атома. При этом испускается так называемый электрон конверсии. Само явление называется внутренней конверсией. Внутренняя конверсия — процесс, конкурирующий с g-излучением.
Электронам конверсии соответствуют дискретные значения энергии, зависящей от работы выхода электрона из оболочки, из которой электрон вырывается, и от энергии Е, отдаваемой ядром при переходе из возбужденного состояния в основное. Если вся энергия Е выделяется в виде у-кванта, то частота излучения v определяется из извест ного соотношения E=hv. Бели же испускаютЛ электроны внутренней конверсии, то их энергии равны Е—АК, E—AL, ..., где Ак, AL, ... — работа выхода электрона из К-и L-оболочек. Моноэнергетичность электронов конверсии позволяет отличить их от b-электронов, спектр которых непрерывен (см. § 258). Возникшее в результате вылета электрона вакантное место на внутренней оболочке атома будет заполняться электро нами с вышележащих оболочек. Поэтому внутренняя конверсия всегда сопровождается характеристическим рентгеновским излучением.
g-Кванты, обладая нулевой массой покоя, не могут замедляться в среде, поэтому при прохождении g-излучения сквозь вещество они либо поглощаются, либо рассеива ются им. g-Кванты не несут электрического заряда и тем самым не испытывают влияния кулоновских сил. При прохождении пучка у-квантов сквозь вещество их энергия не меняется, но в результате столкновений ослабляется интенсивность, изменение которой описывается экспоненциальным законом I = I0 е-mx (I0 и I — интенсивности g-излучения на входе и выходе слоя поглощающего вещества толщиной х, m — коэффициент поглощения). Так как g-излучение — самое проникающее излучение, то m для многих веществ — очень малая величина; m зависит от свойств вещества и от энергии g-квантов.
g-Кванты, проходя сквозь вещество, могут взаимодействовать как с электронной оболочкой атомов вещества, так и с их ядрами. В квантовой электродинамике доказывается, что основными процессами, сопровождающими прохождение g-излучения через вещество, являются фотоэффект, комптон-эффект (комптоновское рассеяние) и образование электронно-позитронных пар.
Фотоэффект, или фотоэлектрическое поглощение g-нзлучення, — это процесс, при котором атом поглощает g-квант и испускает электрон. Так как электрон выбивается из одной из внутренних оболочек атома, то освободившееся место заполняется электронами из вышележащих оболочек, и фотоэффект сопровождается характеристическим рентгеновским излучением. Фотоэффект является преобладающим механизмом поглощения в области малых энергий g-квантов (Eg < 100 кэВ). Фотоэффект может идти только на связанных электронах, так как свободный электрон не может поглотить g-квант, при этом одновременно не удовлетворяются законы сохранения энергии и импульса.
По мере увеличения энергии g-квантов (Еg » 0,5 МэВ) вероятность фотоэффекта очень мала и основным механизмом взаимодействия g-квантов с веществом является комптоновское рассеяние (см. § 206).
При Еg >1,02 МэВ = 2mес2 (mе — масса покоя электрона) становится возможным процесс образования электронно-позитронных пар в электрических полях ядер. Вероятность этого процесса пропорциональна Z2 и увеличивается с ростом Еg. Поэтому при Еg » 10 МэВ основным процессом взаимодействия g-излучения в любом веществе является образование электроиво-позитронных пар.
Если энергия g-кванта превышает энергию связи нуклонов в ядре (7—8 МэВ), то в результате поглощения g-кванта может наблюдаться ядерный фотоэффект — выброс из ядра одного из нуклонов, чаще всего нейтрона.
Большая проникающая способность g-излучения используется в гамма-дефектоскопии — методе дефектоскопии, основанном на различном поглощении g-излучения при распространении его на одинаковое расстояние в разных средах. Местоположение и размеры дефектов (раковины, трещины и т. д.) определяются по различию в интенсивностях излучения, прошедшего через разные участки просвечиваемого изделия.
Воздействие g-излучения (а также других видов ионизирующего излучения) на вещество характеризуют дозой ионизирующего излучения. Различаются:
Поглощенная доза излучения — физическая величина, равная отношению энергии излучения к массе облучаемого вещества.
Единица, поглощенной дозы излучения — грей (Гр)* [* С. Грей (1666—1736) — английский физик. ]: 1 Гр= 1 Дж/кг — доза из лучения, при которой облученному веществу массой 1 кг передается энергия любого ионизирующего излучения 1 Дж.
Экспозиционная доза излучения — физическая величина, равная отношению суммы электрических зарядов всех ионов одного знака, созданных электронами, освобожденными в облученном воздухе (при условии полного использования ионизирующей способности электронов), к массе этого воздуха.
Единила экспозиционной дозы излучения — кулон на килограмм (Кл/кг); внеси стемной единицей является рентген (Р): 1 Р=2,58Ч 10-4 Кл/кг.
Биологическая доза — величина, определяющая воздействие излучения на организм.
Единица биологической дозы — биологический эквивалент рентгена (бэр): 1 бэр — доза любого вида ионизирующего излучения, производящая такое же биоло гическое действие, как и доза рентгеновского или g-излучения в 1 Р (1 бэр= 10-2 Дж/кг).
Мощность дозы излучения — величина, равная отношению дозы излучения к времени облучения. Различают: 1) мощность поглощенной дозы (единица — грей на секунду (Гр/с)); 2) мощность экспозиционной дозы (единица — ампер на килограмм (А/кг)).

§ 260. Резонансное поглощение g-излучения
(эффект Мбссбауэра* [** Р. Мёссбауэр (р. 1929) — немецкий физик.]
*)

Как уже указывалось, дискретный спектр g-излучения обусловлен дискретностью энер гетических уровней ядер атомов. Однако, как следует из соотношения неопределен ностей (215.5), энергия возбужденных состояний ядра принимает значения в пределах DЕ » h/Dt, где Dt — время жизни ядра в возбужденном состоянии. Следовательно, чем меньше Dt, тем больше неопределенность энергии DЕ возбужденного состояния. DЕ = 0 только для основного состояния стабильного ядра (для него Dt®Ґ). Неопределенность энергии квантово-механической системы (например, атома), обладающей дискретными уровнями энергии, определяет естественную ширину энергетического уровня (Г). Например, при времени жизни возбужденного состояния, равного 10-13 с, естественная ширина энергетического уровня примерно 10-2 эВ.
Неопределенность энергии возбужденного состояния, обусловливаемая конечным временем жизни возбужденных состояний ядра, приводит к немонохроматичности g-излучения, испускаемого при переходе ядра из возбужденного состояния в основное. Эта немонохроматичность называется естественной шириной линии g-излучения.
При прохождении g-излучения в веществе помимо описанных выше (см. § 259) процессов (фотоэффект, комптоновское рассеяние, образование электронно-позитронных пар) должны в принципе наблюдаться также резонансные эффекты. Если ядро облучить g-квантами с энергией, равной разности одного из возбужденных и основного энергетических состояний ядра, то может иметь место резонансное поглощение g-нзлучення ядрами: ядро поглощает g-квант той же частоты, что и частота излучаемого ядром g-кванта при переходе ядра из данного возбужденного состояния в основное.
Наблюдение резонансного поглощения g-квантов ядрами считалось долгое время невозможным, так как при переходе ядра из возбужденного состояния с энергией Е в основное (его энергия принята равной нулю) излучаемый g-квант имеет энергию Еg несколько меньшую, чем Е, из-за отдачи ядра в процессе излучения:

где Ея — кинетическая энергия отдачи ядра. При возбуждении же ядра и переходе его из основного состояния в возбужденное с энергией Е g-квант должен иметь энергию

где Ея — энергия отдачи, которую g-квант должен передать поглощающему ядру.
Таким образом, максимумы линий излучения и поглощения сдвинуты друг относительно друга на величину 2 Ея (рис. 344). Используя закон сохранения импульса, согласно которому в рассмотренных процессах излучения и поглощения импульсы g -кванта и ядра должны быть равны, получим
(260.1)

Рис. 344

Например, возбужденное состояние изотопа иридия 19177Ir имеет энергию 129 кэВ, а время его жизни порядка 10- 10 с, так что ширина уровня Г»4Ч 10- 5 эВ. Энергия же отдачи при излучении с этого уровня, согласно (260.1), приблизительно равна 5Ч 10- 2 эВ, т. е. на три порядка больше ширины уровня. Естественно, что никакое резонансное поглощение в таких условиях невозможно (для наблюдения резонансного поглощения линия поглощения должна совпадать с линией излучения). Из опытов также следовало, что на свободных ядрах резонансное поглощение не наблюдается.
Резонансное поглощение g -излучения в принципе может быть получено только при компенсации потери энергии на отдачу ядра. Эту задачу решил в 1958 г. Р. Мёссбауэр (Нобелевская премия 1961 г.). Он исследовал излучение и поглощение g-излучения в ядрах, находящихся в кристаллической решетке, т. е. в связанном состоянии (опыты проводились при низкой температуре). В данном случае импульс и энергия отдачи передаются не одному ядру, излучающему (поглощающему) g-квант, а всей кристаллической решетке в целом. Так как кристалл обладает гораздо большей массой по сравнению с массой отдельного ядра, то в соответствии с формулой (260.1) потери энергии на отдачу становятся исчезающе малыми. Поэтому процессы излучения и поглощения g-излучения происходят практически без потерь энергии (идеально упруго).
Явление упругого испускания (поглощения) g -квантов атомными ядрами, связанными в твердом теле, не сопровождающееся изменением внутренней энергии тела, называется эффектом Мёссбауэра. При рассмотренных условиях линии излучения и поглощения g -излучения практически совпадают и имеют весьма малую ширину, равную естественной ширине Г. Эффект Мёссбауэра был открыт на глубоко охлажденном 19177Ir (с понижением температуры колебания решетки «замораживаются»), а впос ледствии обнаружен более чем на 20 стабильных изотопах (например, 57Fe, 67Zn).
Мёссбауэр вооружил экспериментальную физику новым методом измерений невиданной прежде точности. Эффект Мёссбауэра позволяет измерять энергии (частоты) излучения с относительной точностью Г/Е = 10- 15ё10-17, поэтому во многих областях науки и техники может служить тончайшим «инструментом» различного рода измерений. Появилась возможность измерять тончайшие детали g -линий, внутренние магнитные и электрические поля в твердых телах и т. д.
Внешнее воздействие (например, зеемановское расщепление ядерных уровней или смещение энергии фотонов при движении в поле тяжести) может привести к очень малому смещению либо линии поглощения, либо линии излучения, иными словами, привести к ослаблению или исчезновению эффекта Мёссбауэра. Это смещение, следовательно, может быть зафиксировано. Подобным образом в лабораторных условиях был обнаружен (I960) такой тончайший эффект, как «гравитационное красное смещение», предсказанный общей теорией относительности Эйнштейна.

§ 261. Методы наблюдения и регистрации
радиоактивных излучений и частиц

Практически все методы наблюдения и регистрации радиоактивных излучений (a,b,g) и частиц основаны на их способности производить ионизацию и возбуждение атомов среды. Заряженные частицы вызывают эти процессы непосредственно, а g -кванты и нейтроны обнаруживаются по ионизации, вызываемой возникающими в результате их взаимодействия с электронами и ядрами атомов среды быстрыми заряженными частицами. Вторичные эффекты, сопровождающие рассмотренные процессы, такие, как вспышка света, электрический ток, потемнение фотопластинки, позволяют регистрировать пролетающие частицы, считать их, отличать друг от друга и измерять их энергию. Приборы, применяемые для регистрации радиоактивных излучений и частиц, делятся на две группы:
приборы, позволяющие регистрировать прохождение частицы через определенный участок пространства и в некоторых случаях определять ее характеристики, например энергию (сцинтилляционный счетчик, черепковский счетчик, импульсная ионизационная камера, газоразрядный счетчик, полупроводниковый счетчик);
приборы, позволяющие наблюдать, например, фотографировать, следы треки) частиц в веществе (камера Вильсона, диффузионная камера, пузырьковая камера, ядерные фотоэмульсии).
1. Сцинтилляцнонный счетчик. Наблюдение сцинтилляций — вспышек света при по падании быстрых частиц на флуоресцирующий экран — первый метод, позволивший У. Круксу* [* У. Крукс (1832—1919) — английский физик и химик.]
и Э. Резерфорду на заре ядерной физики (1903) визуально регистрировать a-часгицы. Сцинтилляционный счетчик — детектор ядерных частиц, основными элементами которого являются сцинтиллятор (кристаллофосфор) (см. § 245) и фотоэлектронный умножитель (см. § 105), позволяющий преобразовывать слабые световые вспышки в электрические импульсы, регистрируемые электронной аппаратурой. Обычно в качестве сцинтилляторов используют кристаллы некоторых неорганических (ZnS для a-частиц; Nal-Tl, CsI-Tl — для b?-частиц и g -квантов) или органических (антрацен, пластмассы — для g -квантов) веществ.
Сцинтилляционные счетчики обладают высоким разрешением по времени (10- 10 —10-5 с), определяемым родом регистрируемых частиц, сцинтиллятором и разрешающим временем используемой электронной аппаратуры (оно доведено сейчас до 10- 8 —10- 10 с). Для этого типа счетчиков эффективность регистрации — отношение числа зарегистрированных частиц к полному числу частиц, пролетевших в счетчике, примерно 100% для заряженных частиц и 30% для g -квантов. Так как для многих сцинтилляторов (Nal-Tl, CsI-Tl, антрацен, стильбен) интенсивность световой вспышки в широком интервале энергий пропорциональна энергии первичной частицы, то счетчики на данных сцинтилляторах применяются для измерения энергии регистрируемых частиц.
Черенковскмй счетчик. Принцип его работы и свойства излучения Вавилова — Черенкова, лежащие в основе работы счетчика, рассмотрены в § 189. Назначение черенковских счетчиков — это измерение энергии частиц, движущихся в веществе со скоростью, превышающей фазовую скорость света в данной среде, и разделение этих частиц по массам. Зная угол испускания излучения (см. (189.1)), можно определить скорость частицы, что при известной массе частицы равносильно определению ее энергии. С другой стороны, если масса частицы не известна, то она может быть определена по независимому измерению энергии частицы. Кроме того, при наличии двух пучков частиц с разными скоростями будут различными и углы испускания излучений, по которым можно искомые частицы определить. Для черенковских счетчиков разрешение по скоростям (иными словами, по энергиям) составляет 10- 3 —10- 5. Это позволяет отделять элементарные частицы друг от друга при энергиях порядка
1 ГэВ, когда углы испускания излучения различаются очень мало. Время разрешения счетчиков достигает 10- 9 с. Счетчики Черепкова устанавливаются на космических кораблях для исследования космического излучения.
Импульсная ионизационная камера — это детектор частиц, действие которого основано на способности заряженных частиц вызывать ионизацию газа. Ионизационная камера представляет собой заполненный газом электрический конденсатор, к электродам которого подается постоянное напряжение. Регистрируемая частица, попадая в пространство между электродами, ионизует газ. Напряжение подбирается так, чтобы все образовавшиеся ионы, с одной стороны, доходили до электродов, не успев рекомбинировать, а с другой — не азгонялись настолько сильно, чтобы производить вторичную ионизацию. Следовательно, в ионизационной камере на ее электродах непосредственно собираются ионы, возникшие под действием заряженных частиц. Ионизационные камеры бывают двух типов: интегрирующие (в них измеряется суммарный
ионизационный ток) и импульсные, являющиеся, по существу, счетчиками (в них регистрируется прохождение одиночной частицы и измеряется ее энергия, правда, с довольно низкой точностью, обусловленной малостью выходного импульса).
Газоразрядный счетчик. Газоразрядный счетчик обычно выполняется в виде наполненного газом металлического цилиндра (катод) с тонкой проволокой (анод), натянутой по его оси. Хотя газоразрядные счетчики по конструкции похожи на ионизационную камеру, однако в них основную роль играет вторичная ионизация, обусловленная столкновениями первичных ионов с атомами и молекулами газа и стенок. Можно говорить о двух типах газоразрядных счетчиков: пропорциональных (в них газовый разряд несамостоятельный (см. § 106), т. е. гаснет при прекращении действия внешнего ионизатора) и счетчиках Гейгера — Мюллера* [* Э. Мюллер (1911—1977) — немецкий физик. 482] (в них разряд самостоятельный (см. § 107), т. е. поддерживается после прекращения действия внешнего ионизатора).
В пропорциональных счетчиках рабочее напряжение выбирается так, чтобы они работали в области вольт-амперной характеристики, соответствующей несамостоя тельному разряду, в которой выходной импульс пропорционален первичной иониза ции, т. е. энергии влетевшей в счетчик частицы. Поэтому они не только регистрируют частицу, но и измеряют ее энергию. В пропорциональных счетчиках импульсы, вызыва емые отдельными частицами, усиливаются в 103 —10* раз (иногда и в 106 раз).
Счетчик Гейгера -— Мюллера по конструкции и принципу действия существенно не отличается от пропорционального счетчика, но работает в области вольт-амперной характеристики, соответствующей самостоятельному разряду (см. § 107), когда выход ной импульс не зависит от первичной ионизации. Счетчики Гейгера — Мюллера регистрируют частицу без измерения ее энергии. Коэффициент усиления этих счетчиков составляет 108. Для регистрации раздельных импульсов возникший разряд следует гасить. Для этого, например, последовательно с нитью включается такое сопротивление, чтобы возникший в счетчике разряд вызывал на сопротивлении падение напряже ния, достаточное для прерывания разряда. Временное разрешение счетчиков Гейгера— Мюллера составляет 10- 3 —10- 7 с. Дня газоразрядных счетчиков эффективность регистрации равна примерно 100% для заряженных частиц и примерно 5% для 7-квантов.
Полупроводниковый счетчик — это детектор частиц, основным элементом которого является полупроводниковый диод (см. § 250). Время разрешения составляет примерно 10- 9 с. Полупроводниковые счетчики обладают высокой надежностью, могут работать в магнитных полях. Малая толщина рабочей области (порядка сотни микрометров) полупроводниковых счетчиков не позволяет применять их для измерения высокоэнергетических частиц.
Камера Вильсона* [** Ч. Вильсон (1869—1959) — английский физик.]
* (1912) — это старейший и на протяжении многих десятилетий (вплоть до 50—60-х годов) единственный тип трекового детектора. Выполняется обычно в виде стеклянного цилиндра с плотно прилегающим поршнем. Цилиндр наполняется нейтральным газом (обычно гелием или аргоном), насыщенным парами воды или спирта. При резком, т. е. адиабатическом, расширении газа пар становится пересыщенным и на траекториях частиц, пролетевших через камеру, образуются треки из тумана. Образовавшиеся треки для воспроизводства их пространственного расположения фотографируются стереоскопически, т. е. под разными углами. По характеру и геометрии треков можно судить о типе прошедших через камеру частиц (например, a -частица оставляет сплошной жирный след, b?-частица — тонкий), об энергии частиц (по величине пробега), о плотности ионизации (по количеству капель на единицу длины трека), о количестве участвующих в реакции частиц.
Российский ученый Д. В. Скобельцын (1892—1990) значительно расщирил возможности камеры Вильсона, поместив ее в сильное магнитное поле (1927). По искривлению траектории заряженных частиц в магнитном поле, т. е. по кривизне трека, можно судить о знаке заряда, а если известен тип частицы (ее заряд и масса), то по радиусу кривизны трека можно определить энергию и массу частицы даже в том случае, если весь трек в камере не умещается (для реакций при высоких энергиях вплоть до сотен мегаэлектрон-вольт). Недостаток камеры Вильсона — ее малое рабочее время, составляющее примерно 1% от времени, затрачиваемого для подготовки камеры к последующему расширению (выравнивание температуры и давления, рассасывание остатков треков, насыщение паров), а также трудоемкость обработки результатов.
Диффузионная камера (1936) — это разновидность камеры Вильсона. В ней рабочим веществом также является пересыщенный пар, но состояние пересыщения создается диффузией паров спирта от нагретой (до 10°С) крышки ко дну, охлаждаемому (до — 60°С) твердой углекислотой. Вблизи дна возникает слой пересыщенного пара толщиной примерно 5 см, в котором проходящие заряженные частицы создают треки. В отличие от вильсоновской диффузионная камера работает непрерывно. Кроме того, из-за отсутствия поршня в ней могут создаваться давления до 4 МПа, что значительно увеличивает ее эффективный объем.
Пузырьковая камера (1952; американский физик Д. Глезер (р. 1926)). В пузырьковой камере рабочим веществом является перегретая (находящаяся под давлением) прозрачная жидкость (жидкие водород, пропан, ксенон). Запускается камера, так же как и камера Вильсона, резким сбросом давления, переводящим жидкость в неустойчивое перегретое состояние. Пролетающая в это время через камеру заряженная частица вызывает резкое вскипание жидкости, и траектория частицы оказывается обозначенной цепочкой пузырьков
пара — образуется трек, который, как и в камере Вильсона, фотографируется. Пузырьковая камера работает циклами. Размеры пузырьковых камер примерно такие же, как камеры Вильсона (от десятков сантиметров до 2 м), но их эффективный объем на 2—3 порядка больше, так как жидкости гораздо плотнее газов. Это позволяет использовать пузырьковые камеры для исследования длинных цепей рождений и распадов частиц высоких энергий.
9. Ядерные фотоэмульсии (1927; российский физик Л. В. Мысовский (1888—1939)) — это простейший трековый детектор заряженных частиц. Прохождение заряженной частицы в эмульсии вызывает ионизацию, приводящую к образованию центров скрытого изображения. После проявления следы заряженных частиц обнаруживаются в виде цепочки зерен металлического серебра. Так как эмульсия — среда более плотная, чем газ или жидкость, используемые в вильсоновской и пузырьковой камерах, то при прочих равных условиях длина трека в эмульсии более короткая. Так, трек длиной 0,05 см в эмульсии эквивалентен треку в 1 м в камере Вильсона. Поэтому фотоэмульсии применяются для изучения реакций, вызываемых частицами в ускорителях сверхвысоких энергий и в космических лучах. В практике исследований высоко энергетических частиц используются также так называемые стоны — большое число маркированных фотоэмульсионных пластинок, помещаемых на пути частиц и после проявления промеряемых под микроскопом.
В настоящее время методы наблюдения и регистрации заряженных частиц и излучений настолько разнообразны, что их описание выходит за рамки курса.
Большое значение начинают играть сравнительно новые (1957) приборы — искровые камеры, использующие преимущества счетчиков (быстрота регистрации) и трековых детекторов (полнота информации о треках). Говоря образно, искровая камера — это набор большого числа очень мелких счетчиков. Поэтому она близка к счетчикам, так как информация в ней выдается немедленно, без последующей обработки, и в то же время обладает свойствами трекового детектора, так как по действию многих счетчиков можно установить треки частиц.

§ 262. Ядерные реакции и их основные типы

Ядерные реакции — это превращения атомных ядер при взаимодействии с элементарными частицами (в том числе и с g -квантами) или друг с другом. Наиболее распространенным видом ядерной реакции является реакция, записываемая символически следующим образом:

где X и Y — исходное и конечное ядра, а и b — бомбардирующая и испускаемая (или испускаемые) в ядерной реакции частицы.
В ядерной физике эффективность взаимодействия характеризуют эффективным сечением а. С каждым видом взаимодействия частицы с ядром связывают свое эффективное сечение: эффективное сечение рассеяния определяет процессы рассеяния, эффективное сечение поглощения — процессы поглощения. Эффективное сечение ядерной реакции

где N — число частиц, падающих за единицу времени на единицу площади поперечного сечения вещества, имеющего в единице объема n ядер, dN — число этих частиц, вступающих в ядерную реакцию в слое толщиной dх. Эффективное сечение а имеет размерность площади и характеризует вероятность того, что при падении пучка частиц на вещество произойдет реакция.
Единица эффективного сечения ядерных процессов — барн (1 барн =
10-28 м2).
В любой ядерной реакции выполняются законы сохранения электрических зарядов и массовых чисел: сумма зарядов (и сумма массовых чисел) ядер и частиц, вступающих в ядерную реакцию, равна сумме зарядов (и сумме массовых чисел) конечных продук тов (ядер и частиц) реакции. Выполняются также законы сохранения энергии, импульса и момента импульса.
В отличие от радиоактивного распада, который протекает всегда с выделением энергии, ядерные реакции могут быть как экзотермическими (с выделением энергии), так и эндотермическими (с поглощением энергии).
Важную роль в объяснении механизма многих ядерных реакций сыграло пред положение Н. Бора (1936) о том, что ядерные реакции протекают в две стадии по следующей схеме:
(262.1)
Первая стадия — это захват ядром X частицы а, приблизившейся к нему на расстояние действия ядерных сил (примерно 2Ч10-15 м), и образование промежуточного ядра С, называемого составным (или компаунд-ядром). Энергия влетевшей в ядро частицы быстро распределяется между нуклонами составного ядра, в результате чего оно оказывается в возбужденном состоянии. При столкновении нуклонов составного ядра один из нуклонов (или их комбинация, например дейтрон — ядро тяжелого изотопа водорода — дейтерия, содержащее один протон и один нейтрон) или a-частица может получить энергию, достаточную для вылета из ядра. В результате возможна вторая стадия ядерной реакции — распад составного ядра на ядро Y и частицу b.
В ядерной физике вводится характерное ядерное время — время, необходимое для пролета частицей расстояния порядка величины, равной диаметру ядра (d » 10-15 м). Так, для частицы с энергией 1 МэВ (что сответствует ее скорости v » 107 м/с) характер ное ядерное время t = 10-15 м/107 м/с = 10-22 с. С другой стороны, доказано, что время жизни составного ядра равно 10- 16—10- 12 с, т.е. составляет (106 —1010) т. Это же означает, что за время жизни составного ядра может произойти очень много столкновении нуклонов между собой, т. е. перераспределение энергии между нуклонами действительно возможно. Следовательно, составное ядро живет настолько долго, что полностью «забывает», каким образом оно образовалось. Поэтому характер распада составного ядра (испускание им частицы b) — вторая стадия ядерной реакции — не зависит от способа образования составного ядра — первой стадии.

<< Пред. стр.

стр. 22
(общее количество: 26)

ОГЛАВЛЕНИЕ

След. стр. >>