<< Пред. стр.

стр. 8
(общее количество: 26)

ОГЛАВЛЕНИЕ

След. стр. >>

10.5. Воздушный пузырек диаметром d = 0,02 мм находится на глубине А = 20 см под поверхностью воды. Определить давление воздуха в этом пузырьке. Атмосферное давление принять нормальным. Поверхностное натяжение воды s =73 мН/м, а ее плотность r = 1 г/см3 [118 кПа]

Вертикальный открытый капилляр внутренним диаметром d=3 мм опущен в сосуд с ртутью. Определить радиус кривизны ртутного мениска в капилляре, если разность уровней ртути в сосуде и в капилляре ДА=3,7 мм. Плотность ртути r=13.6 г/см3, а поверхностное натяжение s =0.5 Н/м. [2 мм]

Для нагревания металлического шарика массой 25 г от 10 до 30°С затратили количество теплоты, равное 117 Дж. Определить теплоемкость шарика из закона Дюлонга и Пти и материал шарика. [Мм 107 кг/моль; серебро]
ЭЛЕКТРИЧЕСТВО И ЭЛЕКТРОМАГНЕТИЗМ

Глава 11
Электростатика

§ 77. Закон сохранения электрического заряда

Еще в глубокой древности было известно, что янтарь, потертый о шерсть, притягивает легкие предметы. Английский врач Джильберт (конец XVI в.) назвал тела, способные после натирания притягивать легкие предметы, наэлектризованными. Сейчас мы говорим, что тела при этом приобретают электрические заряды. Несмотря на огромное разнообразие веществ в природе, существует только два типа электрических зарядов: заряды, подобные возникающим на стекле, потертом о кожу (их назвали положительными), и заряды, подобные возникающим на эбоните, потертом о мех (их назвали отрицательными); одноименные заряды друг от друга отталкиваются, разноимен ные — притягиваются.
Опытным путем (1910—1914) американский физик Р. Милликен (1868—1953) пока зал, что электрический заряд дискрете», т. е. заряд любого тела составляет целое кратное от элементарного электрического заряда е (е=1,6Ч10-19 Кл). Электрон (me =9,11Ч10-31 кг) и протон (mp =1,67Ч10-27 кг) являются соответственно носителями элементарных отрицательного и положительного зарядов.
Все тела в природе способны электризоваться, т. е. приобретать электрический заряд. Электризация тел может осуществляться различными способами: соприкосновением (трением), электростатической индукцией (см. § 92) и т. д. Всякий процесс заряжения сводится к разделению зарядов, при котором на одном из тел (или части тела) появляется избыток положительного заряда, а на другом (или другой части тела) — избыток отрицательного заряда. Общее количество зарядов обоих знаков, содержащихся в телах, не изменяется: эти заряды только перераспределяются между телами.
Из обобщения опытных данных был установлен фундаментальный закон природы, экспериментально подтвержденный в 1843 г. английским физиком М. Фарадеем (1791—1867), — закон сохранения заряда: алгебраическая сумма электрических зарядов любой замкнутой системы (системы, не обменивающейся зарядами с внешними телами) остается неизменной, какие бы процессы ни происходили внутри этой системы.
Электрический заряд — величина релятивистски инвариантная, т. е. не зависит от системы отсчета, а значит, не зависит от того, движется этот заряд или покоится.
В зависимости от концентрации свободных зарядов тела делятся на проводники, диэлектрики и полупроводники. Проводники — тела, в которых электрический заряд может перемещаться по всему его объему. Проводники делятся на две группы: 1) проводники первого рода (металлы) — перенос в них зарядов (свободных электронов) не сопровождается химическими превращениями; 2) проводники второго рода (например, расплавленные соли, растворы кислот) — перенос в них зарядов (положительных и отрицательных ионов) ведет к химическим изменениям. Диэлектрики (например, стекло, пластмассы) — тела, в которых практически отсутствуют свободные заряды. Полупроводники (например, германий, кремний) занимают промежуточное положение между проводниками и диэлектриками. Указанное деление тел является весьма условным, однако большое различие в них концентраций свободных зарядов обусловливает огромные качественные различия в их поведении и оправдывает поэтому деление тел на проводники, диэлектрики и полупроводники.
Единица электрического заряда (производная единица, так как определяется через единицу силы тока) — кулон (Кл) — электрический заряд, проходящий через поперечное сечение проводника при силе тока 1 А за время 1 с.

§ 78. Закон Кулона

Закон взаимодействия неподвижных точечных электрических зарядов установлен в 1785 г. Ш. Кулоном с помощью крутильных весов, подобных тем, которые (см. § 22) использовались Г. Кавендишем для определения гравитационной постоянной (ранее этот закон был открыт Г. Кавендишем, однако его работа оставалась неизвестной более 100 лет). Точечным называется заряд, сосредоточенный на теле, линейные раз меры которого пренебрежимо малы по сравнению с расстоянием до других заряженных тел, с которыми он взаимодействует. Понятие точечного заряда, как и материальной точки, является физической абстракцией.
Закон Кулона: сила взаимодействия F между двумя неподвижными точечными зарядами, находящимися в вакууме, пропорциональна зарядам Q1 и Q2 и обратно пропорциональна квадрату расстояния r между ними:

где k — коэффициент пропорциональности, зависящий от выбора системы единиц.
Сила F направлена по прямой, соединяющей взаимодействующие заряды, т. е. является центральной, и соответствует притяжению (F < 0) в случае разноименных зарядов и отталкиванию (F > 0) в случае одноименных зарядов. Эта сила называется кулоновской силой. В векторной форме закон Кулона имеет вид
(78.1)
где F12 — сила, действующая на заряд Q1 со стороны заряда Q2, r12 — радиус-вектор, соединяющий заряд Q2 с зарядом Q1, r = |r12| (рис. 117). На заряд Q2 со стороны заряда Q1 действует сила F21 = — F12.


Рис. 117

В СИ коэффициент пропорциональности равен

Тогда закон Кулона запишется в окончательном виде:
(78.2)
Величина е0 называется электрической постоянной; она относится к числу фундаментальных физических постоянных и равна







§ 79. Электростатическое поле. Напряженность
электростатического поля

Если в пространство, окружающее электрический заряд, внести другой заряд, то на него будет действовать кулоновская сила; значит, в пространстве, окружающем электрические заряды, существует силовое поле. Согласно представлениям современной физики, поле реально существует и наряду с веществом является одной из форм существования материи, посредством которого осуществляются определенные взаимодействия между макроскопическими телами или частицами, входящими в состав вещества. В данном случае говорят об электрическом поле — поле, посредством которого взаимодействуют электрические заряды. Мы будем рассматривать электрические поля, которые создаются неподвижными электрическими зарядами и называются электростатическими.
Для обнаружения и опытного исследования электростатического поля используется пробный точечный положительный заряд — такой заряд, который не искажает исследуемое поле (не вызывает перераспределения зарядов, создающих поле). Если в поле, создаваемое зарядом Q, поместить пробный заряд Q0, то на него действует сила F, различная в разных точках поля, которая, согласно закону Кулона (78.2), пропорциональна пробному заряду Q0. Поэтому отношение F/Q0 не зависит от Q0 и характеризует электростатическое поле в той точке, где пробный заряд находится. Эта величина называется напряженностью и является силовой характеристикой электростатического поля.
Напряженность электростатического поля в данной точке есть физическая величина, определяемая силой, действующей на пробный единичный положительный заряд, помещенный в эту точку поля:
(79.1)
Как следует из формул (79.1) и (78.1), напряженность поля точечного заряда в вакууме

Направление вектора Е совпадает с направлением силы, действующей на положительный заряд. Если поле создается положительным зарядом, то вектор Е направлен вдоль радиуса-вектора от заряда во внешнее пространство (отталкивание пробного положи тельного заряда); если поле создается отрицательным зарядом, то вектор Е направлен к заряду (рис. 118).

Рис. 118

Из формулы (79.1) следует, что единица напряженности электростатического поля — ньютон на кулон (Н/Кл): 1 Н/Кл — напряженность такого поля, которое на точечный заряд 1 Кл действует с силой в 1 Н; 1 Н/Кл=1 В/м, где В (вольт) — единица потенциала электростатического поля (см. § 84).
Графически электростатическое поле изображают с помощью линий напряженности — линий, касательные к которым в каждой точке совпадают с направлением вектора Е (рис. 119).


Рис. 119

Линиям напряженности приписывается направление, совпадающее с направлением вектора напряженности. Так как в каждой данной точке пространства вектор напряженности имеет лишь одно направление, то линии напряженности никогда не пересекаются. Для однородного поля (когда вектор напряженности в любой точке постоянен по величине и направлению) линии напряженности параллельны вектору напряженности. Если поле создается точечным зарядом, то линии напряженности — радиальные прямые, выходящие из заряда, если он положителен (рис. 120, а), и входящие в него, если заряд отрицателен (рис. 120, 6). Вследствие большой наглядности графический способ представления электростатического поля широко применяется в электротехнике.


Рис. 120

Чтобы с помощью линий напряженности можно было характеризовать не только направление, но и значение напряженности электростатического поля, условились про водить их с определенной густотой (см. рис. 119): число линий напряженности, пронизывающих единицу площади поверхности, перпендикулярную линиям напряженности, должно быть равно модулю вектора Б. Тогда число линий напряженности, пронизывающих элементарную площадку dS, нормаль о которой образует угол a с вектором Е, равно Е dScosa = EndS, где Еn — проекция вектора Е на нормаль n к площадке dS (рис. 121).


Рис. 121

Величина

называется потоком вектора напряженности через площадку dS. Здесь dS = dSn — вектор, модуль которого равен dS, а направление совпадает с направлением нормали n к площадке. Выбор направления вектора n (а следовательно, и dS) условен, так как его можно направить в любую сторону. Единица потока вектора напряженности электростатического поля — 1 ВЧм.
Для произвольной замкнутой поверхности S поток вектора Е сквозь эту поверхность
(79.3)
где интеграл берется по замкнутой поверхности S. Поток вектора Е является алгебраической величиной: зависит не только от конфигурации поля Е, но и от выбора направления n. Для замкнутых поверхностей за положительное направление нормали принимается внешняя нормаль, т. е. нормаль, направленная наружу области, охватываемой поверхностью.
В истории развития физики имела место борьба двух теорий: дальнодействия и близкодействия. В теории дальнодействия принимается, что электрические явления определяются мгновенным взаимодействием зарядов на любых расстояниях. Согласно теории близкодействия, все электрические явления определяются изменениями полей зарядов, причем эти изменения распространяются в пространстве от точки к точке с конечной скоростью. Применительно к электростатическим полям обе теории дают одинаковые результаты, хорошо согласующиеся с опытом. Переход же к явлениям, обусловленным движением электрических зарядов, приводит к несостоятельности теории дальнодействия, поэтому современной теорией взаимодействия заряженных частиц является теория близкодействия.

§ 80. Принцип суперпозиции электростатических
полей. Поле диполя

Рассмотрим метод определения модуля и направления вектора напряженности Е в каждой точке электростатического поля, создаваемого системой неподвижных зарядов Q1, Q2,…, Qn.
Опыт показывает, что к кулоновским силам применим рассмотренный в механике принцип независимости действия сил (см. § 6), т. е. результирующая сила F, действующая со стороны поля на пробный заряд Q0 равна векторной сумме сил Fi, приложенных к нему со стороны каждого из зарядов Q;.
(80.1)
Согласно (79.1), F = Q0E и F1 = Q0E1, где Е — напряженность результирующего поля, а Е1 — напряженность поля, создаваемого зарядом Q1. Подставляя последние выражения в (80.1), получаем
(80.2)
Формула (80.2) выражает принцип суперпозиции (наложения) электростатических полей, согласно которому напряженность Е результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.
Принцип суперпозиции позволяет рассчитать электростатические поля любой системы неподвижных зарядов, поскольку если заряды не точечные, то их можно всегда свести к совокупности точечных зарядов.
Принцип суперпозиции применим для расчета электростатического поля электрического диполя. Электрический диполь — система двух равных по модулю разноименных точечных зарядов (+Q, - Q), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля. Вектор, направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положи тельному и равный расстоянию между ними, называется плечом диполя l. Вектор
(80.3)
совпадающий по направлению с плечом диполя и равный произведению заряда |Q| на плечо 1, называется электрическим моментом диполя или дипольным моментом (рис. 122).

Рис. 122

Согласно принципу суперпозиции (80.2), напряженность Е поля диполя в произвольной точке

где Е+ и Е_ — напряженности полей, создаваемых соответственно положительным и отрицательным зарядами. Воспользовавшись этой формулой, рассчитаем напряженность поля в произвольной точке на продолжении оси диполя и на перпендикуляре к середине его оси.
Напряженность поля на продолжении оси диполя в точке А (рис. 123).

Рис. 123

Как видно из рисунка, напряженность поля диполя в точке А направлена по оси диполя и по модулю равна

Обозначив расстояние от точки А до середины оси диполя через г, на основании формулы (79.2) для вакуума можно записать

Согласно определению диполя, l/2 ? г, поэтому


2. Напряженность поля на перпендикуляре, восставленном к осям из его середины, в точке В (рис. 123). Точка В равноудалена от зарядов, поэтому
(80.4)
где г' — расстояние от точки В до середины плеча диполя. Из подобия равнобедренных треугольников, опирающихся на плечо диполя и вектор Ев, получим
(80.5)
Подставив в выражение (80.S) значение (80.4), получим

Вектор Eg имеет направление, противоположное вектору электрического момента диполя (вектор р направлен от отрицательного заряда к положительному).

§ 81. Теорема Гаусса для электростатического
поля в вакууме

Вычисление напряженности поля системы электрических зарядов с помощью принципа суперпозиции электростатических полей можно значительно упростить, используя выведенную немецким ученым К. Гауссом (1777—1855) теорему, определяющую поток вектора напряженности электрического поля сквозь произвольную замкнутую поверхность.
В соответствии с формулой (79.3) поток вектора напряженности сквозь сферическую поверхность радиуса r, охватывающую точечный заряд Q, находящийся в ее центре (рис. 124), равен



Рис. 124

Этот результат справедлив для замкнутой поверхности любой формы. Действительно, если окружить сферу (рис. 124) произвольной замкнутой поверхностью, то каждая линия напряженности, пронизывающая сферу, пройдет и сквозь эту поверхность.
Если замкнутая поверхность произвольной формы охватывает заряд (рис. 125), то при пересечении любой выбранной линии напряженности с поверхностью она то входит в нее, то выходит из нее.


Рис. 125

Нечетное число пересечений при вычислении потока в конечном счете сводится к одному пересечению, так как поток считается положительным, если линии напряженности выходят из поверхности, и отрицательным для линий, входящих в поверхность. Бели замкнутая поверхность не охватывает заряда, то поток сквозь нее равен нулю, так как число линий напряженности, входящих в поверхность, равно числу линий напряженности, выходящих из нее.
Таким образом, для поверхности любой формы, если она замкнута и заключает в себя точечный заряд Q, поток вектора Е будет равен Q/e0, т. е.
(81.1)
Знак потока совпадает со знаком заряда Q.
Рассмотрим общий случай произвольной поверхности, окружающей n зарядов. В соответствии с принципом суперпозиции (80.2) напряженность Е поля, создаваемого всеми зарядами, равна сумме напряженностей Е, полей, создаваемых каждым зарядом в отдельности: . Поэтому

Согласно (81.1), каждый из интегралов, стоящий под знаком суммы, равен Qi/e0 . Следовательно,
(81.2)
Формула (81.2) выражает теорему Гаусса для электростатического поля в вакууме: поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на e0. Эта теорема выведена математически для векторного поля любой природы русским математиком М. В. Остроградским (1801—1862), а затем независимо от него применительно к электростатическому полю — К. Гауссом.
В общем случае электрические заряды могут быть «размазаны» с некоторой объемной плотностью p = dQ/dV, различной в разных местах пространства. Тогда суммарный заряд, заключенный внутри замкнутой поверхности S, охватывающей некоторый объем V,
(81.3)

Используя формулу (81.3), теорему Гаусса (81.2) можно записать так:




§ 82. Применение теоремы Гаусса к расчету
некоторых электростатических полей
в вакууме

1. Поле равномерно заряженной бесконечной плоскости. Бесконечная плоскость (рис. 126) заряжена с постоянной поверхностной плотностью +s
(s = dQ/dS — заряд, приходящийся на единицу поверхности).



Рис. 126

Линии напряженности перпендикулярны рассматриваемой плоскости и направлены от нее в обе стороны. В качестве замкнутой поверхности мысленно построим цилиндр, основания которого параллельны заряженной плоскости, а ось перпендикулярна ей. Так как образующие цилиндра параллельны линиям напряженности (cosa = 0), то поток вектора напряженности сквозь боковую поверхность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания (площади оснований равны и для основания En совпадает с E), т. е. равен 2ES. Заряд, заключенный внутри построенной цилиндрической поверхности, равен sS. Согласно теореме Гаусса (81.2), 2ES = sS/e0, откуда
(82.1)
Из формулы (82.1) вытекает, что Е не зависит от длины цилиндра, т. е. напряженность поля на любых расстояниях одинакова по модулю, иными словами, поле равномерно заряженной плоскости однородно. .
2. Поле двух бесконечных параллельных разноименно зараженных плоскостей (рис. 127). Пусть плоскости заряжены равномерно разноименными зарядами с поверхностными плотностями +a и — a. Поле таких плоскостей найдем как суперпозицию полей, создаваемых каждой из плоскостей в отдельности. На рисунке верхние стрелки соответствуют полю от положительно заряженной плоскости, нижние — от отрицательной плоскости. Слева и справа от плоскостей поля вычитаются (линии напряженности направлены навстречу друг другу), поэтому здесь напряженность поля E = 0. В области между плоскостями Е = Е+ + Е_ (Е+ и E_ определяются по формуле (82.1)), поэтому результирующая напряженность
(82.2)


Рис. 127

Таким образом, результирующая напряженность поля в области между плоскостями описывается формулой (82.2), а вне объема, ограниченного плоскостями, равна нулю.
3. Поле равномерно заряженной сферической поверхности. Сферическая поверхность радиуса R с общим зарядом Q заряжена равномерно с поверхностной плотностью + s. Благодаря равномерному распределению заряда по поверхности поле, создаваемое им, обладает сферической симметрией. Поэтому линии напряженности направлены радиально (рис. 128).


Рис. 128

Построим мысленно сферу радиуса r, имеющую общий центр с заряженной сферой. Если г > R, то внутрь поверхности попадает весь заряд Q, создающий рассматриваемое поле, и, по теореме Гаусса (81.2), 4pr2E = Q/e0, откуда
(82.3)
При r>R поле убывает с расстоянием r по такому же закону, как у точечного заряда. График зависимости E от г приведен на рис. 129. Если rў < R, то замкнутая поверхность не содержит внутри зарядов, поэтому внутри равномерно заряженной сферической поверхности электростатическое поле отсутствует (Е = 0).

Рис. 129

4. Поле объемно заряженного шара. Шар радиуса R с общим зарядом Q заряжен равномерно с объемной плотностью r ( - заряд, приходящийся на единицу объема). Учитывая соображения симметрии (см. п. 3), можно показать, что для напряженности поля вне шара получится тот же результат, что и в предыдущем случае (см. (82.3)). Внутри же шара напряженность поля будет другая. Сфера радиуса r' < R охватывает заряд G' = 4/3prў3r. Поэтому, согласно теореме Гаусса (81.2), Учитывая, что , получаем
(82.4)
Таким образом, напряженность поля вне равномерно заряженного шара описывается формулой (82.3), а внутри его изменяется линейно с расстоянием / согласно выражению (82.4). График зависимости Е от г для рассмотренного случая приведен на рис. 130.





Рис. 130

5. Поле равномерно зараженного бесконечного цилиндра (нити). Бесконечный цилиндр радиуса R (рис. 131) заряжен равномерно с линейной плотностью t ( - заряд, приходящийся на единицу длины).


Рис. 131

Из соображений симметрии следует, что линии напряженности будут направлены по радиусам круговых сечений цилиндра с одинаковой густотой во все стороны относительно оси цилиндра. В качестве замкнутой поверхности мысленно построим коаксиальный с заряженным цилиндр радиуса r и высотой l. Поток вектора Е сквозь торцы коаксиального цилиндра равен нулю (торцы параллельны линиям напряженности), а сквозь боковую поверхность равен 2prlE. По теореме Гаусса (81.2), при r > R 2prlE = tl/e0, откуда
(82.5)
Если г < R, то замкнутая поверхность зарядов внутри не содержит, поэтому в этой области E = 0. Таким образом, напряженность поля вне равномерно заряженного бесконечного цилиндра определяется выражением (82.5), внутри же его поле отсутствует.

§ 83. Циркуляция вектора напряженности
электростатического поля

Если в электростатическом поле точечного заряда Q из точки 1 в точку 2 вдоль произвольное траектории (рис. 132) перемещается другой точечный заряд Q0, то сила, приложенная к заряду, совершает работу. Работа силы F на элементарном перемещении dl равна




Рис. 132

Так как d/cosa = dr, то

Работа при перемещении заряда Q0 из точки 1 в точку 2
(83.1)
не зависит от траектории перемещения, а определяется только положениями начальной 1 и конечной 2 точек. Следовательно, электростатическое поле точечного заряда является потенциальным, а электростатические силы — консервативными (см. § 12).
Из формулы (83.1) следует, что работа, совершаемая при перемещении электрического заряда во внешнем электростатическом поле по любому замкнутому пути L, равна нулю, т.е.

. (83.2)

Если в качестве заряда, переносимого в электростатическом поле, взять единичный точечный положительный заряд, то элементарная работ а сил поля на пути dl равна Edl = Eldl, где El = Ecosa - проекция вектора Е на направление элементарного перемещения. Тогда формулу (83.2) можно записать в виде
(83.3)

Интеграл называется циркуляцией вектора напряженности. Следовательно, циркуляция вектора напряженности электростатического поля вдоль любого замкнутого контура равна нулю. Силовое поле, обладающее свойством (83.3), называется потенциальным. Из обращения в нуль циркуляции вектора Е следует, что линии напряженности электростатического поля не могут быть замкнутыми, они начинаются и кончаются на зарядах (соответственно на положительных или отрицательных) или же уходят в бесконечность.
Формула (83.3) справедлива только для электростатического поля. В дальнейшем будет показано, что для поля движущихся зарядов условие (83.3) не выполняется ( для него циркуляция вектора напряженности отлична от нуля).

§ 84. Потенциал электрического поля

Тело, находящееся в потенциальном поле сил (а электростатическое поле является потенциальным), обладает потенциальной энергией, за счет которой силами поля совершается работа (см. § 12). Как известно (см.(12.2)), работа консервативных сил совершается за счет убыли потенциальной энергии. Поэтому работу (83.1) сил электростатического поля можно представить как разность потенциальных энергий, которыми обладает точечный заряд Q0 в начальной и конечной точках поля заряда Q:

(84.1)

откуда следует, что потенциальная энергия заряда Q0 в поле заряда Q равна

Она, как и в механике, определяется неоднозначно, а с точностью до произвольной постоянной С. Если считать, что при удалении заряда в бесконечность (r ® Ґ) потенциальная энергия обращается в нуль (U = 0), то С = 0 и потенциальная энергия заряда Q0, находящегося в поле заряда Q на расстоянии г от него, равна
(84.2)
Для одноименных зарядов Q0Q > 0 и потенциальная энергия их взаимодействия (отталкивания) положительна, для разноименных зарядов Q0Q < 0 и потенциальная энергия их взаимодействия (притяжения) отрицательна.
Если поле создается системой л точечных зарядов Q1, Q2, …, Qn, то работа электростатических сил, совершаемая над зарядом Q0. равна алгебраической сумме работ сил, обусловленных каждым из зарядов в отдельности. Поэтому потенциальная энергия U заряда Q0, находящегося в этом поле, равна сумме потенциальных энергий Ui каждого из зарядов:
(84.3)
Из формул (84.2) и (84.3) вытекает, что отношение U/Q0 не зависит от Q0 и является поэтому энергетической характеристикой электростатического поля, называемой потенциалом:
(84.4)
Потенциал j в какой-либо точке электростатического поля есть физическая величина, определяемая потенциальной энергией единичного положительного заряда, помещенного в эту точку.
Из формул (84.4) и (84.2) следует, что потенциал поля, создаваемого точечным зарядом Q, равен
(84.5)
Работа, совершаемая аилами электростатического поля при перемещении заряда Q0 из точки 1 в точку 2 (см. (84.1), (84.4), (84.5)), может быть представлена как
(84.6)
т. е. равна произведению перемещаемого заряда на разность потенциалов в начальной и конечной точках. Разность потенциалов двух точек 1 и 2 в электростатическом поле определяется работой, совершаемой силами поля, при перемещении единичного положительного заряда из точки 1 в точку 2.
Работа сил поля при перемещении заряда Q0 из точки 1 в точку 2 может быть записана также в виде
(84.7)
Приравняв (84.6) и (84.7), придем к выражению для разности потенциалов:
(84.8)
где интегрирование можно производить вдоль любой линии, соединяющей начальную и конечную точки, так как работа сил электростатического поля не зависит от траектории перемещения.
Если перемещать заряд Q0 из произвольной точки за пределы поля, т. е. в бесконечность, где, по условию, потенциал равен нулю, то работа сил электростатического поля, согласно (84.6), АҐ =О0j, откуда
(84.9)
Таким образом, потенциал — физическая величина, определяемая работой по перемещению единичного положительного заряда при удалении его из данной точки поля в бесконечность. Эта работа численно равна работе, совершаемой внешними силами (против сил электростатического поля) по перемещению единичного положительного заряда из бесконечности в данную точку поля.
Из выражения (84.4) следует, что единица потенциала — вольт (В): 1 В есть потенциал такой точки поля, в которой заряд в 1 Кл обладает потенциальной энергией 1 Дж (1 В=1 Дж/Кл). Учитывая размерность вольта, можно показать, что введенная в § 79 единица напряженности электростатического поля действительно равна 1 В/м: 1 Н/Кл=1 НЧм/(КлЧм)=1 Дж/(КлЧм)=1 В/м.
Из формул (84.3) и (84.4) вытекает, что если поле создается несколькими зарядами, то потенциал поля системы зарядов равен алгебраической сумме потенциалов полей всех этих зарядов:

§ 85. Напряженность как градиент потенциала.
Эквипотенциальные поверхности

Найдем взаимосвязь между напряженностью электростатического поля, являющейся его силовой характеристикой, и потенциалом — энергетической характеристикой поля. Работа по перемещению единичного точечного положительного заряда из одной точки поля в другую вдоль оси х при условии, что точки расположены бесконечно близко друг к другу и x1 – x2 = dx, равна Exdx. Та же работа равна j1 -j2 = dj. Приравняв оба выражения, можем записать
(85.1)
где символ частной производной подчеркивает, что дифференцирование производится только по х. Повторив аналогичные рассуждения для осей y и z, можем найти вектор Е:

где i, j, k — единичные векторы координатных осей х, у, z.
Из определения градиента (12.4) и (12.6). следует, что
(85.2)
т. е. напряженность Е поля равна градиенту потенциала со знаком минус. Знак минус определяется тем, что вектор напряженности Е поля направлен в сторону убывания потенциала.
Для графического изображения распределения потенциала электростатического поля, как и в случае поля тяготения (см. § 25), пользуются эквипотенциальными поверхностями — поверхностями, во всех точках которых потенциал j имеет одно и то же значение.
Если поле создается точечным зарядом, то его потенциал, согласно (84.5),
. Таким образом, эквипотенциальные поверхности в данном случае — концентрические сферы. С другой стороны, линии напряженности в случае точечного заряда — радиальные прямые. Следовательно, линии напряженности в случае точечного заряда перпендикулярны эквипотенциальным поверхностям.
Линии напряженности всегда нормальны к эквипотенциальным поверхностям. Действительно, все точки эквипотенциальной поверхности имеют одинаковый потенциал, поэтому работа по перемещению заряда вдоль этой поверхности равна нулю, т. е. электростатические силы, действующие на заряд, всегда направлены по нормалям к эквипотенциальным поверхностям. Следовательно, вектор Е всегда нормален к эквипотенциальным поверхностям, а поэтому линии вектора Е ортогональны этим поверхностям.
Эквипотенциальных поверхностей вокруг каждого заряда и каждой системы зарядов можно провести бесчисленное множество. Однако их обычно проводят так, чтобы разности потенциалов между любыми двумя соседними эквипотенциальными поверхностями были одинаковы. Тогда густота эквипотенциальных поверхностей наглядно характеризует напряженность поля в разных точках. Там, где эти поверхности рас положены гуще, напряженность поля больше.
Итак, зная расположение линий напряженности электростатического поля, можно построить эквипотенциальные поверхности и, наоборот, по известному расположению эквипотенциальных поверхностей можно определить в каждой точке поля модуль и направление напряженности поля. На рис. 133 для примера показан вид линий напряженности (штриховые линии) и эквипотенциальных поверхностей (сплошные линии) полей положительного точечного заряда (а) и заряженного металлического цилиндра, имеющего на одном конце выступ, а на другом — впадину (б).

Рис. 133

§ 86. Вычисление разности потенциалов по
напряженности поля

Установленная в § 85 связь между напряженностью поля и потенциалом позволяет по известной напряженности поля найти разность потенциалов между двумя произвольными точками этого поля.
1. Поле равномерно заряженной бесконечной плоскости определяется формулой (82.1):

где s — поверхностная плотность заряда. Разность потенциалов между точками, лежащими на расстояниях х1 и х2 от плоскости, равна (используем формулу (85.1))


2. Поле двух бесконечных параллельных разноименно заряженных плоскостей определяется формулой (8X2): Е = s/e0, где s — поверхностная плотность заряда. Разность потенциалов между плоскостями, расстояние между которыми равно d (см. формулу (85.1)), равна
(86.1)
3. Поле равномерно заряженной сферической поверхности радиуса R с общим зарядом Q вне сферы (r > R) вычисляется по (82.3): . Разность потенциалов между двумя точками, лежащими на расстояниях r1 и г2 от центра сферы (r1 > R, r2 > К, r2 > r1), равна
(86.2)

Если принять r1 = r и r2 = Ґ, то потенциал поля вне сферической поверхности, согласно формуле (86.2), задается выражением

(ср. с формулой (84.5)). Внутри сферической поверхности потенциал всюду одинаков и равен


График зависимости j от r приведен на рис. 134.








Рис. 134

Поле объемно заряженного шара радиуса R с общим зарядом Q вне шара (r > R) вычисляется по формуле (82.3), поэтому разность потенциалов между двумя точками, лежащими на расстояниях r1 и г2 от центра шара (r1 > R, г2 > R, г2 > г1), определяется формулой (86.2). В любой точке, лежащей внутри шара на расстоянии r' от его центра (rў < R), напряженность определяется выражением (82.4):

Следовательно, разность потенциалов между двумя точками, лежащими на расстояниях rў1 и rў2 от центра шара (rў1 < R, rў2 < R, rў2 > rў1) равна

5. Поле равномерно заряженного бесконечного цилиндра радиуса R, заряженного с линейной плотностью t, вне цилиндра (r > R) определяется формулой (82.5): Е= . Следовательно, разность потенциалов между двумя точками, лежащими на расстояниях r1 и г2 от оси заряженного цилиндра (r1 >R. г2 > R, г2 > г1), равна
(86.3)
§ 87. Типы диэлектриков. Поляризация
диэлектриков

Диэлектрик (как и всякое вещество) состоит из атомов и молекул. Так как положительный заряд всех ядер молекулы равен суммарному заряду электронов, то молекула в целом электрически нейтральна. Если заменить положительные заряды ядер молекул суммарным зарядом + Q, находящимся в центре «тяжести» положительных зарядов, а заряд всех электронов — суммарным отрицательным зарядом —Q, находящимся в центре «тяжести» отрицательных зарядов, то молекулу можно рассматривать как электрический диполь с электрическим моментом, определяемым формулой (80.3). Первую группу диэлектриков (N2, Н2, О2, СО2, СН4, ...) составляют вещества, молекулы которых имеют симметричное строение, т. е. центры «тяжести» положительных и отрицательных зарядов в отсутствие внешнего электрического поля совпадают и, следовательно, дипольный момент молекулы р равен нулю. Молекулы таких диэлектриков называются неполярными. Под действием внешнего электрического поля заряды неполярных молекул смещаются в противоположные стороны (положительные по полю, отрицательные против поля) и молекула приобретает дипольный момент.
Вторую группу диэлектриков (Н2О, NH3, SO2, CO,...) составляют вещества, молекулы которых имеют асимметричное строение, т. е. центры «тяжести» положительных и отрицательных зарядов не совпадают. Таким образом, эти молекулы в отсутствие внешнего электрического поля обладают дипольным моментом. Молекулы таких диэлектриков называются полярными. При отсутствии внешнего поля, однако, дипольные моменты полярных молекул вследствие теплового движения ориентированы в пространстве хаотично и их результирующий момент равен нулю. Если такой диэлектрик поместить во внешнее поле, то силы этого поля будут стремиться повернуть диполи вдоль поля и возникает отличный от нуля результирующий момент.
Третью группу диэлектриков (NaCl, KC1, КВг, ...) составляют вещества, молекулы которых имеют ионное строение. Ионные кристаллы представляют собой пространственные решетки с правильным чередованием ионов разных знаков. В этих кристаллах нельзя выделить отдельные молекулы, а рассматривать их можно как систему двух вдвинутых одна в другую ионных подрешеток. При наложении на ионный кристалл электрического поля происходит некоторая деформация кристаллической решетки или относительное смещение подрешеток, приводящее к возникновению дипольных моментов.
Таким образом, внесение всех трех групп диэлектриков во внешнее электрическое поле приводит к возникновению отличного от нуля результирующего электрического момента диэлектрика, или, иными словами, к поляризации диэлектрика. Поляризацией диэлектрика называется процесс ориентации диполей или появления под воздействием внешнего электрического поля ориентированных по полю диполей.
Соответственно трем группам диэлектриков различают три вида поляризации:
электронная, или деформационная, поляризация диэлектрика с неполярными молекулами, заключающаяся в возникновении у атомов индуцированного дипольного момента за счет деформации электронных орбит;
ориентационная, или дипольная, поляризация диэлектрика с полярными молекулами, заключающаяся в ориентации имеющихся дипольных моментов молекул по полю. Естественно, что тепловое движение препятствует полной ориентации молекул, но в результате совместного действия обоих факторов (электрическое поле и тепловое движение) возникает преимущественная ориентация дипольных моментов молекул по полю. Эта ориентация тем сильнее, чем больше напряженность электрического поля и ниже температура;
ионная поляризация диэлектриков с ионными кристаллическими решетками, заключающаяся в смещении подрешетки положительных ионов вдоль поля, а отрицательных — против поля, приводящем к возникновению дипольных моментов.

§ 88. Поляризованность. Напряженность поля в
диэлектрике

При помещении диэлектрика во внешнее электрическое поле он поляризуется, т. е. приобретает отличный от нуля дипольный момент , где рi, — дипольный момент одной молекулы. Для количественного описания поляризации диэлектрика пользуются векторной величиной — поляризованностью, определяемой как дипольный момент единицы объема диэлектрика:
(88.1)
Из опыта следует, что для большого класса диэлектриков (за исключением сегнетоэлектриков, см. § 91) поляризованность Р линейно зависит от напряженности поля Е. Если диэлектрик изотропный и Е не слишком велико, то
(88.2)
где ? — диэлектрическая восприимчивость вещества, характеризующая свойства диэлектрика; ? - величина безразмерная; притом всегда ? > 0 и для большинства диэлектриков (твердых и жидких) составляет несколько единиц (хотя, например, для спирта ? » 25, для воды ? = 80).
Для установления количественных закономерностей поля в диэлектрике внесем в однородное внешнее электрическое поле Е0 (создается двумя бесконечными параллельными разноименно заряженными плоскостями) пластинку из однородного диэлектрика, расположив ее так, как показано на рис. 135. Под действием поля диэлектрик поляризуется, т. е. происходит смещение зарядов: положительные смещаются по полю, отрицательные — против поля. В результате этого на правой грани диэлектрика, обращенного к отрицательной плоскости, будет избыток положительного заряда с поверхностной плотностью +sў, на левой — отрицательного заряда с поверхностной плотностью - s'. Эти нескомпенсированные заряды, появляющиеся в результате поляризации диэлектрика, называются связанными. Так как их поверхностная плотность sў меньше плотности s свободных зарядов плоскостей, то не вое поле Е компенсируется полем зарядов диэлектрика: часть линий напряженности пройдет сквозь диэлектрик, другая же часть — обрывается на связанных зарядах. Следовательно, поляризация диэлектрика вызывает уменьшение в нем поля по сравнению с первоначальным внешним полем. Вне диэлектрика Е = Ео.

Рис. 135

Таким образом, появление связанных зарядов приводит к возникновению дополнительного электрического поля Е' (поля, создаваемого связанными зарядами), которое направлено против внешнего поля Е0 (поля, создаваемого свободными зарядами) и ослабляет его. Результирующее поле внутри диэлектрика

Поле Е' = s'/e0 (поле, созданное двумя бесконечными заряженными плоскостями; см. формулу (82.2)), поэтому
(88.3)
Определим поверхностную плотность связанных зарядов s'. По (88.1), полный дипольный момент пластинки диэлектрика pv = PV = PSd, где S — площадь грани пластинки, d — ее толщина. С другой стороны, полный дипольный момент, согласно (80.3), равен произведению связанного заряда каждой грани Q' = s'S на расстояние d между ними, т. е. pv = s'Sd. Таким образом, PSd = s'Sd, или
(88.4)
т. е. поверхностная плотность связанных зарядов s' равна поляризованности Р. Подставив в (88.3) выражения (88.4) и (88.2), получим

откуда напряженность результирующего поля внутри диэлектрика равна
(88.5)
Безразмерная величина
(88.6)
называется диэлектрической проницаемостью среды. Сравнивая (88.5) и (88.6), видим, что e показывает, во сколько раз поле ослабляется диэлектриком, и характеризует количественно Свойство диэлектрика поляризоваться в электрическом поле.

§ 89. Электрическое смещение. Теорема Гаусса
для электростатического поля в диэлектрике

Напряженность электростатического поля, согласно (88.5), зависит от свойств среды: в однородной изотропной среде напряженность поля Е обратно пропорциональна e. Вектор напряженности Е, переходя через границу диэлектриков, претерпевает скачкообразное изменение, создавая тем самым неудобства при расчетах электростатических полей. Поэтому оказалось необходимым помимо вектора напряженности характеризовать поле еще вектором электрического смещения, который для электрически изотропной среды, по определению, равен
(89.1)
Используя формулы (88.6) и (88.2), вектор электрического смещения можно выразить как
(89.2)
Единица электрического смещения — кулон на метр в квадрате (Кл/м2).
Рассмотрим, с чем можно связать вектор электрического смещения. Связанные заряды появляются в диэлектрике при наличии внешнего электростатического поля, создаваемого системой свободных электрических зарядов, т. е. в диэлектрике на электростатическое поле свободных зарядов накладывается дополнительное поле связанных зарядов. Результирующее поле в диэлектрике описывается вектором напряженности Е, и потому он зависит от свойств диэлектрика. Вектором D описывается электростатическое поле, создаваемое свободными зарядами. Связанные заряды, возникающие в диэлектрике, могут вызвать, однако, перераспределение свободных зарядов, создающих поле. Поэтому вектор D характеризует электростатическое поле, создаваемое свободными зарядами (т. е. в вакууме), но при таком их распределении в пространстве, какое имеется при наличии диэлектрика.
Аналогично, как и поле Е, поле D изображается с помощью линий электрического смещения, направление и густота которых определяются точно так же, как и для линий напряженности (см. §79).
Линии вектора Е могут начинаться и заканчиваться на любых зарядах — свободных и связанных, в то время как линии вектора D — только на свободных зарядах. Через области поля, где находятся связанные заряды, линии вектора D проходят не прерываясь.
Для произвольной замкнутой поверхности S поток вектора D сквозь эту поверхность

где Dn — проекция вектора D на нормаль п к площадке dS. Теорема Гаусса для электростатического поля в диэлектрике:
(89.3)
т. е. поток вектора смещения электростатического поля в диэлектрике сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности свободных электрических зарядов. В такой форме теорема Гаусса справедлива для электростатического поля как для однородной и изотропной, так и для неоднородной и анизотропной сред.
Для вакуума Dn = e0En (e = 1), тогда поток вектора напряженности Е сквозь произвольную замкнутую поверхность (ср. с (81.2)) равен

Так как источниками поля Е в среде являются как свободные, так и связанные заряды, то теорему Гаусса (81.2) для поля Е в самом общем виде можно записать как

где и — соответственно алгебраические суммы свободных и связанных зарядов, охватываемых замкнутой поверхностью S. Однако эта формула неприемлема для описания поля Е в диэлектрике, так как она выражает свойства неизвестного поля Е через связанные заряды, которые, в свою очередь, определяются им же. Это еще раз доказывает целесообразность введения вектора электрического смещения.

§ 90. Условия на границе раздела двух
диэлектрических сред

Рассмотрим связь между векторами Е и D на границе раздела двух однородных изотропных диэлектриков (диэлектрические проницаемости которых e1 и e2 при отсутствии на границе свободных зарядов. Построим вблизи границы раздела диэлектриков 1 и 2 небольшой замкнутый прямоугольный контур ABCDA длины l, ориентировав его так, как показано на рис. 136. Согласно теореме (83.3) о циркуляции вектора Е,

(знаки интегралов по АВ и CD разные, так как пути интегрирования противоположны, а интегралы по участкам ВС и DA ничтожно малы). Поэтому
(90.1)

Рис. 136

Заменив, согласно (89.1), проекции вектора Е проекциями вектора D, деленными на ео?, получим
(90.2)
На границе раздела двух диэлектриков (рис. 137) построим прямой цилиндр ничтожно малой высоты, одно основание которого находится в первом диэлектрике, другое — во втором.

Рис. 137

Основания DS настолько малы, что в пределах каждого из них вектор D одинаков. Согласно теореме Гаусса (89.3),

(нормали n и n' к основаниям цилиндра направлены противоположно). Поэтому
(90.3)
Заменив, согласно (89.1), проекции вектора D проекциями вектора Е, умноженными на Вое, получим
(90.4)
Таким образом, при переходе через границу раздела двух диэлектрических сред тангенциальная составляющая вектора Е (Et) и нормальная составляющая вектора D (Dn) изменяются непрерывно (не претерпевают скачка), а нормальная составляющая вектора Е (Еn) и тангенциальная составляющая вектора D (Dt) претерпевают скачок.
Из условий (90.1) — (90.4) для составляющих векторов Е и D следует, что линии этих векторов испытывают излом (преломляются). Найдем связь между углами a1 и a2 (на рис. 138 e2 > e1). Согласно (90.1) и (90.4), Еt2 = Еt1 и e2En2 = e1En1. Разложим векторы E1 и Е2 у границы раздела на тангенциальные и нормальные составляющие. Из рис. 138 следует, что


Рис. 138

Учитывая записанные выше условия, получим закон преломления линий напряженности Е (а значит, и линий смещения D)

Эта формула показывает, что, входя в диэлектрик с большей диэлектрической проницаемостью, линии Е и D удаляются от нормали.

§ 91. Сетнетоэлектрики

<< Пред. стр.

стр. 8
(общее количество: 26)

ОГЛАВЛЕНИЕ

След. стр. >>