<< Пред. стр.

стр. 2
(общее количество: 5)

ОГЛАВЛЕНИЕ

След. стр. >>


Рис. 4. Одна из причудливых картин мира нелинейной динамики. На ней показано, как меняются в фазовом пространстве величины, определяющие "странность" странных аттракторов --- ляпуновские показатели [27].

Хаос дал новые темы художникам. На рис.4 --- один из образов, созданных вычислительной машиной под управлением дизайнера. Специалисты по компьютерной графике все чаще используют хаотические алгоритмы, чтобы горы на картинках были "как настоящие".

Пожалуй, один из самых заманчивых и опасных талисманов во дворе Хаоса --- новые способы управления сложными системами. В самом деле, близкие траектории у странных аттракторов разбегаются. Достаточно чуть-чуть подтолкнуть систему --- и вот уже точка двигается не по правой ветви, а по левой. И богатырь на распутье уже пошел не по той дороге, где "женатому быть", а по той, где "коня потерять", а с ним и все остальное. Родилась новая область исследований --- управление хаосом. У разных людей очень часто возникает один и тот же вопрос. Если все действительно обстоит таким образом, можно ли развалить государство, пользуясь только телефоном и, конечно, компьютерами, просчитывающими опасную неустойчивую траекторию, на которую можно столкнуть державу?

Твердое "нет" на этот вопрос у большинства нелинейщиков уже сменилось растерянно-осторожным "не знаю".

Итак, лет пятнадцать назад были осознаны принципиальные ограничения в проблеме прогноза. Понято, что во многих важных случаях существует горизонт предсказуемости, за который нам не суждено заглянуть. И после этого ... прогноз стал отраслью индустрии. Почему?


Расписание на послезавтра?

Число возможных Реальностей бесконечно велико. И у каждой Реальности существует бесчисленное множество вариаций. Например, число Реальностей, в которых существует Вечность, бесконечно; число Реальностей, в которых Вечность не существует, тоже бесконечно.


А.Азимов."Конец Вечности"

Времена в науке меняются. Бывшие фавориты --- ядерная физика и аэрокосмические исследования уходят в тень. Студенты физтеха все реже говорят на собеседовании, что они хотят быть физиками-теоретиками, и все чаще --- что хотят стать полезными великим и могучим холдинговым компаниям либо респектабельным банкам.

В одном из недавних номеров "Nature Monthly" был приведен список наиболее цитируемых статей. Лишь одна статья там относится к точным наукам --- работа по высокотемпературной сверхпроводимости. Все остальное --- генная инженерия, рестриктазы, клонирование.

Одному из авторов на семинаре довелось слышать радикальное суждение:"В ХХI в. практически вся существующая физика не будет востребована. Наука должна заниматься не идеями, а компьютерными программами, работающими системами, и, в конечном итоге, --- товарами". Времена меняются.

Что это? Прихоть недалеких политиков, уставших от требований военно-промышленного комплекса и сокращающих расходы на науку? Или нечто большее? И как в новом интерьере выглядят те, кто занимается хаосом, прогнозом, проектами будущего?

Образно современную нелинейную науку можно представить в виде своеобразного трехголового дракона. Первая голова --- романтическая. Она занимается вещами, которые могут изменить стандарт научных исследований или парадигму. Например, интересно предсказывать действия коллектива в тех или иных ситуациях. Но коллектив способен к рефлексии. Он делает, думает о том, что делает, и думает о том, что думает. Другими словами, здесь приходится строить математические модели таких вещей, как самооценка или совесть.

Или другой аспект. Компьютеры, без которых сейчас серьезный прогноз невозможен, по мнению создателей кибернетики, имитировали некоторые черты мозга. Однако наделить вычислительные машины способностью учиться, поразительной возможностью обобщать, принимать быстрые неожиданные решения ученые пока не сумели. Армии программистов приходится водить компьютеры на "вожжиках" все более и более сложных программ, как водят несмышленых малышей. Попытка избавиться от этого сейчас предпринимается в новой области исследований, называемой нейронаукой. Ее цель --- понять принципы работы мозга и создать на этой основе вычислительные структуры. Теория хаоса предлагает здесь странные решения, завораживающие своей парадоксальностью.

Одним словом, эта голова занята разведением гадких утят, которые могут превратиться в прекрасных лебедей через 10, 20 или 50 лет. А могут и не превратиться.

Вторая голова, самая конкретная и деловитая, ведет исследования в тех областях, которые уже доказали свою перспективность. Например, специалисты по хаосу сейчас в большой чести в ряде ведущих западных банков и холдинговых компаний. Собственно, они и превратили получение прогнозов в индустрию.

Основные идеи здесь довольно просты. Обычно приверженцы "эффективного рынка" считают, что изменение цен происходит только под воздействием новой информации. Специалисты по хаосу полагают, что рынки живут по своим, более сложным, и пока не понятым, законам. Их можно изучать, пользуясь теми же методами и приемами, какие применяются для исследования колебательных химических реакций, изменений солнечной активности или схода снежных лавин. Почему-то в США эту область исследований называют "новой ракетной наукой". Может быть, из-за того, что ключевые позиции здесь заняли люди, в недалеком прошлом занимавшиеся сверхсекретными военными разработками.

А как же "горизонт прогноза"? Дело в том, что теоремы, которые доказывают математики, в основном относятся к средним величинам, к тому случаю, когда "сани" очень долго ездят вдоль аттрактора. Помнится, Алису очень удивило, что в Стране Чудес есть "очень странное место". Такие "странные места" могут существовать и в тех пространствах, где обитают странные аттракторы. Попав в них, мы получаем завидную возможность предсказать свою будущность на довольно большой срок. Просто эти места надо уметь искать. Или другая возможность --- научить компьютер выделять наиболее существенные вещи из огромного потока информации.

Наверное, читателю не надо объяснять, что к нашему "рынку" все это совершенно неприменимо. Ведь не надо учить механику для строительства воздушных замков или посещать курсы кройки, чтобы newpage noindent сшить платье на голого короля. Лучше по-свойски выпить с самим королем или, на худой конец, с его первым замом.

В нелинейной науке есть много глубоких серьезных проблем. Здесь надо считать, доказывать теоремы, искать новые подходы. Хотя и старые не так уж плохи. В самом деле, не так давно шахматная программа выиграла у Гарри Каспарова. Как тут не вспомнить уверенные заявления пятилетней давности, что это не может случиться, потому, что не может случиться никогда. Как не упомянуть философов и методологов, горячо обсуждавших лет 15 назад вопрос, может ли машина мыслить. А ведь одна из ведущих шахматных программ была создана силами четырех студентов, развивавших известные подходы. Нормальная наука, как ее называют специалисты по науковедению, которой занимается вторая голова, --- вещь серьезная.

И, наконец, третья голова. В сущности, она самая главная. Она отвечает не на те вопросы, на которые отвечать приятно и полезно, а на те, на которые нужно. Именно поэтому нелинейная наука интенсивно развивается, например, в Институте прикладной математики им. М.В. Келдыша Академии наук. Этот институт известен крупным вкладом в реализацию космической и ядерной программ, в становление вычислительной математики и программирования, в другие проекты национального масштаба. Дело в том, что на множество вопросов, связанных с прогнозом, нам было бы очень желательно знать ответы. И как можно быстрее. Некоторые работы, выполненные в Институте, и обсуждаются в этой книге.

Вы заметили, что детективы и традиционные фантастические романы на книжных полках потеснили книги в жанре "фэнтези"? В них создаются иные миры, построенные по иным законам, и далее "проигрывается" жизнь в этих мирах. Вероятно, это симптом неблагополучия.


Как это ни банально звучит, так, как мы живем, жить нельзя. Немножко можно, а долго нельзя. Как бы Вы отнеслись к человеку, который получает 100 тыс. в месяц, а тратит миллион? Но именно так живет человечество, которое лишь на одну десятую использует возобновляемые источники энергии. А невозобновляемые источники, как это ни странно, не возобновляются.

За последние 20 лет конфликты и региональные войны заставили покинуть родные места 13 млн. человек, число "экологических беженцев" за тот же срок превысило 10 млн. При американской бомбардировке Нагасаки число убитых и раненых составило около 140 тыс. человек. В результате аварии на химическом заводе в Бхопале это число превысило 220 тыс. Человечество играет в очень опасную игру. Оно ведет свой корабль со спокойствием и уверенностью невежды.

Каковы сценарии развития человечества, отдельных стран и регионов? Что будет, если в стране не будет высшего образования? Где поворотные пункты (точки бифуркации) в истории, в геополитике, в смертельно опасной гонке вооружений и разорительной для отдельных стран "гонке разоружений"? На эти вопросы и призвана отвечать третья голова.

Модели, созданные на основе нелинейной науки, предложенные американским ученым Дж.Майер-Крессом и его коллегами, стали в свое время важным аргументом в пользу отказа от первоначальных планов СОИ. Выяснилось, что развертывание такой системы не повысит, а существенно понизит безопасность США. В этой модели есть чувствительность к начальным данным. Малые причины могут иметь большие и трагические последствия.

Другая, недавно предложенная концепция --- теория самоорганизованной критичности,- устанавливает глубокую аналогию между сходом снежных лавин, колебаниями курсов акций, землетрясениями, техногенными катастрофами и проблемами, возникающими при хранении ядерных арсеналов. Третьей голове есть что сказать об "окнах уязвимости" нашей цивилизации и возможных альтернативах.

Впрочем, третьей голове приходится хуже других. Чтобы погубить дело, надо сделать его "престижным". Вспомните 70-е годы. Энтузиасты создавали новую науку --- экологию. Спорили, мечтали. А сейчас ... Выдающимися знатоками экологии вдруг оказались незадачливые генсеки и отставные премьеры. Специалистов как-то незаметно оттеснили. Сейчас то же самое происходит с "безопасностью", "устойчивым развитием", "планированием будущего". Это "идет". Под это "дают". Но будущее слишком серьезная вещь, чтобы отдавать его в руки временщиков от политики и науки.

Примерно такие слова авторам приходится говорить студентам физтеха, польстившимся на слова "хаос" и "нелинейная наука". И почти все твердо решают иметь дело со второй головой. Это --- отражение отношения к науке в обществе. В обществе, где сегодня не любят смотреть ни на звезды, ни под ноги. Но времена меняются.



Глава 1.

Синергетика и изменение взгляда на мир

1.1 Нелинейная динамика и двор Хаоса
1.2 Структуры, самоорганизация, нелинейная динамика


1.2 Структуры, самоорганизация, нелинейная динамика
Время простых вопросов

Самая большая беда для науки --- превратиться в моду.

С.Цвейг

Молодость научного направления связана с чувством удивления и с парадоксами. Задается простой вопрос. На него дается очевидный ответ, который оказывается неверным. Это и ведет к размышлениям. Поэтому попробуем вначале удивиться.

Представьте себе, что мы находимся на побережье небольшого острова в океане, длина побережья которого ... бесконечна. Такого не бывает, скажет здравомыслящий читатель. И окажется не прав. Рис.5 показывает, как можно построить такую фигуру.



Рис. 5. Несколько первых шагов в последовательности, приводящей к построению острова Коха, который имеет ограниченную площадь и бесконечный периметр.

На первом шаге берем обычный равносторонний треугольник (см. рис.5). Потом на каждой стороне достраиваем по треугольнику, сторона которого в три, а значит, площадь в девять раз меньше, чем у исходного. И так далее. То, что получится после бесконечного количества таких шагов, называется островом Коха. Почему его побережье бесконечно? Это очень просто. На втором шаге периметр фигуры увеличится в 4/3 раза. На третьем --- еще в 4/3. Это произошло потому, что каждый отрезок мы заменили ломаной, длина которой в 4/3 раза больше. А (4/3)n при n, стремящемся к бесконечности, конечно, тоже стремится к бесконечности. Если вспомнить знакомую из школьных времен геометрическую прогрессию, то можно убедиться, что площадь острова Коха конечна.

Теперь представим себе, что мы решили измерить периметр острова Коха, пользуясь линейкой определенной длины. При этом мы, конечно, будем заменять сложную изрезанную береговую линию ломаной со звеньями, не меньшими, чем наша линейка, как это всегда делают географы. Измеренный периметр будет зависеть от длины линейки. Это кажется совершенно неожиданным. Но действительно, чем меньше длина линейки, тем больше измеренная длина побережья. Простейшая процедура измерения длины оказывается совсем не так проста, как кажется вначале.

Остров Коха обладает еще одной забавной особенностью. Допустим, что мы фотографируем этот остров в океане из космоса. Мы можем фотографировать с любым увеличением, но часть побережья будет тем меньше, чем больше увеличение. И мелкие детали в крупном масштабе, естественно, будут теряться. Типичная картина, которую мы увидим, показана на рис.6. В крупном масштабе видим большой зубец и несколько маленьких. Увеличим маленький зубчик. То есть, по существу, увеличим маленький прямоугольничек до размеров первоначального. Опять выделим маленький прямоугольник, опять увеличим и опять увидим то же самое ... И так до бесконечности. Это свойство выглядеть в любом, сколь угодно мелком масштабе примерно одинаково сейчас называется масштабной инвариантностью, а множества, которые им обладают, --- фракталями. Можно спросить, как же характеризовать фракталы, если, как в сказке про Алису, размеры становятся какими-то зыбкими, ненадежными и начинают зависеть от размеров линейки?



Рис. 6. Фракталы обладают масштабной инвариантностью --- при увеличении мы вновь и вновь видим одну и ту же картину. Побережье острова Коха в разных масштабах, на каждом следующем рисунке левый прямоугольник показан в увеличенном виде.

На это математики могут ответить просто и остроумно:"Важна не сама длина, а то, как она зависит от размеров линейки, т.е. важно некое число, называемое фрактальной размерностью". Для отрезка --- 1, для квадрата --- 2, для куба --- 3. Для фракталов --- дробное число. Отсюда и само название "фрактали", происходящее от английского "fractal" --- дробный, неполный, частичный. Например, для острова Коха оно лежит между 1 и 2. Такое значение как будто говорит, что это уже не обычная кривая, но еще не плоскость.

Мы надеемся, после чтения всего написанного наш читатель не утратил способности здраво рассуждать. А для того, чтобы эту способность обострить, пусть он представит, что авторы этих строк просят скромную, а может быть, и не очень скромную сумму, например, на исследования фрактальной геометрии. Наверное, сначала возникнет настроение, точно выраженное словами одного грибоедовского героя:"Ну нет, ученостью меня не обморочишь", а потом и первое конкретное возражение:"Если все так просто, как здесь написано, то неужели об этом раньше не знали?".

Конечно, знали. Первый пример фрактала придумал классик математического анализа Вейерштрассе еще в прошлом веке. Так же, как к береговой линии острова Коха, к этой линии нельзя провести касательную ни в одной точке. Такие функции не имеют производной. Они вызывали у современников резкое чувство протеста. Блестящий математик Эрмит писал своему коллеге Стильтьесу:"... С омерзением и ужасом отворачиваюсь от этой зловредной язвы --- непрерывных функций, нигде не имеющих производных".

И тут, наверное, рождается второе возражение:"Все это очень занятно. Но, конечно, фракталы не имеют никакого отношения к математическому моделированию реальных объектов и тем более к природе. Да и вообще математика не является естественной наукой. И ее роль не следует переоценивать". Это сильное возражение. Оно лежит в русле классической научной традиции. Следуя традиционным канонам, ценность такого математического "монстра" в познании реальности очень невелика. И хотя уже в начале нашего века французский физик Ж.Перрен высказал мысль о том, что фракталы будут полезны во многих физических задачах, в частности, связанных с броуновским движением, к фракталам относились как к забавной математической безделице.

Ситуация кардинально изменилась с появлением в 1977 г. книги Б.Мандельброта "Форма, случай и размерность". В ней, собственно, и было введено слово "фракталы" и показано, что существование фрактальных множеств позволяет объяснить, а в некоторых случаях и предсказать экспериментальные результаты, полученные в разных областях. Среди них --- космология, теория турбулентности, химическая кинетика, физика полимеров, теория просачивания жидкости и еще десятки других. В последние годы к ним прибавились физиология, физика полупроводников, теория роста городов.

Более того, даже остров Коха имеет непосредственное отношение к реальности. Английские военные топографы еще до войны заметили, что длина побережья Великобритании зависит от длины линейки, которой ее измеряют. Аналогичная зависимость определяет длину некоторых рек, побережье многих островов, путь, проходимый частицей при броуновском движении, и многое другое.

Еще пример. Оказалось, что при вытеснении жидкостью с малой вязкостью другой жидкости, с большой вязкостью, первоначально плоская поверхность раздела переходит в поверхность, напоминающую пальцы перчатки. Такие структуры получили название вязких пальцев. Последовательное дробление кончиков пальцев приводит к возникновению фрактальных кластеров. Анализ этого явления и способов борьбы с ним очень важен для приложений. Пальцы наблюдаются при закачке воды под давлением в нефтеносный пласт для повышения нефтеотдачи. Но из-за описанного эффекта вода просачивается значительно дальше, чем хотелось бы, и на поверхность выкачивается смесь, содержащая в основном воду.

Остров Коха показывает, что периметр фигуры может быть никак не связан с ее площадью. Точно так же можно построить тело с конечным объемом и бесконечной площадью поверхности. А теперь вспомним школьную химию, в которой говорится, что большинство технологических процессов требует катализа, и что в большинстве случаев он происходит на поверхности катализатора. Теперь представим себе, что нам удается создавать частицы катализатора, в определенном интервале масштабов устроенные как фракталы с бесконечной площадью. Уже появились первые сообщения о работах экспериментаторов, двигающихся по этому пути.

Этот путь от парадоксального математического объекта к обнаружению новых явлений природы в самых разных областях становится все более традиционным для неклассической науки. Именно это позволило создать новый междисциплинарный подход --- теорию самоорганизации, или синергетику. В ее основе, как догадался читатель, глубокая аналогия между математическими моделями, возникающими в различных областях. Еще недавно синергетику воспринимали как моду или игру ума. Однако умение давать глубокие ответы на простые вопросы, обнаружение ряда замечательных эффектов заставили воспринимать этот подход всерьез.

Синергетика --- это нелинейная наука. Десятки международных журналов, посвященных нелинейной науке, большое количество конференций указывают на растущий интерес к этой области знания. Одним из основоположников нелинейной науки можно считать Анри Пуанкаре. На заре нашего века он высказал мысль, что в будущем удастся предсказать новые явления природы, исходя из самых общих представлений о математических моделях, описывающих изучаемые объекты. Можно сказать, что сегодня мы стали свидетелями того, как это пророчество сбывается.

И еще одно направление синергетики, которое нам кажется очень важным. Оно родилось еще из одного простого вопроса. Тех, кто впервые знакомится с информатикой, обычно поражает несоответствие между огромным количеством информации, которое содержится в цветном изображении, и скромным объемом, который может быть отведен под него в головном мозге. Вывод из этого несоответствия прост: информация в мозге обрабатывается и хранится совсем не так, как в компьютере. Вероятно, мозг выделяет что-то наиболее важное в каждом изображении, сцене, переживании, с чем и имеет дело в дальнейшем. При таком подходе главной проблемой становится научить вычислительную машину выделить необходимое и забыть ненужное.

Взгляните на рис.7. Чтобы "запомнить" стандартным способом эту картину, нарисованную на экране компьютера, нужно хранить более одного мегабайта информации. Однако если выделить "самоподобные" элементы в этом изображении с помощью методов фрактальной геометрии, достаточно одного килобайта. Причем, это число не зависит от размеров экрана. Оно останется тем же самым, если рисовать этот узор, а может быть дракона, с гораздо большим числом деталей. Здесь информацию удается сжать более чем в тысячу раз.



Рис. 7. Пример изображения, при хранении которого информация может быть сжата более чем в 1000 раз.

Хорошо было бы научиться сжимать информацию и для всех других изображений. Трудно переоценить важность этой проблемы. С сейсмических станций, спутников, метеостанций поступает гигантский объем информации. Широкое использование томограмм, энцефалограмм и кардиограмм, снимаемых в течение больших интервалов времени, сделали современные больницы крупными поставщиками данных. Одна из принципиальных задач синергетики --- научиться эффективно хранить, перерабатывать, передавать и анализировать большие информационные потоки.


Среди придуманных миров

Среди миров, в мерцании светил Одной звезды я повторяю имя ... Не потому, чтоб я ее любил, А потому, что я томлюсь с другими.

И.Анненский

Опять простой вопрос. Почему ученым вообще удается что-либо описать и понять? Почему простые модели и теории работают в нашем безумно сложном мире? Один из ответов, предлагаемых нелинейной наукой, таков: все дело в том, что происходит самоорганизация. Сложные системы имеют очень много степеней свободы. Однако все устроено так, что в процессе эволюции выделяется несколько главных, к которым подстраиваются все остальные. Эти главные степени свободы называют параметрами порядка. Когда этих параметров немного, есть шанс описать сложную систему просто. Вот два примера самоорганизации, показывающие, что это явление может быть очень полезным или, напротив, не очень полезным.

Организм обладает гигантским числом степеней свободы. Однако, чтобы поднести ложку ко рту, нам не надо думать о всех или управлять ими. При выработке навыков они подстраиваются к основным, за которыми и надо следить. Возникает иерархическая структура управления и взаимосвязей, которые физиологи называют синергиями (в переводе с греческого это означает совместное действие). Другой пример самоорганизации --- это возникновение иерархии в стае волков или в колонии, на вершине которой стоят "паханы", определяя поведение "шестерок" и других членов иерархии.



Рис. 8. Формы структур, возможные в некоторой среде, в которой есть только процессы горения и теплопроводности. На рис.a показано, как они выглядят в пространстве (x, y, t). На рис.б представлен аналог географической карты, показывающей все структуры, которые могут возникать в такой среде. Жирные точки и сплошные линии соответствуют максимумам, кружочки и пунктир --- минимумам. Крестиком помечена точка, к которой в процессе эволюции будет сходиться волна горения. Тонкая линия --- контур структуры на уровне половины высоты.

Самые простые примеры самоорганизации, в которых удалось разобраться лучше, чем в остальных, дают некоторые системы из физики, химии, биологии. События в них развиваются не только во времени, но и в пространстве. Всех их роднит одна черта. Представим себе диффузию, порожденную случайным блужданием множества частиц, вообразим поразительно сложные траектории частиц жидкости или огромное множество химических реагентов, причудливо превращающихся друг в друга, или множество людей, пользующихся городским транспортом. Казалось бы, здесь все совершенно случайно, или, как говорят физики, имеет место хаос на микроуровне. И во всех этих случаях средние величины ведут себя вполне детерминированным образом. Хаос на микроуровне может приводить к упорядоченности на макроуровне. Но какой странной может быть эта упорядоченность! Реакция в пробирке может пойти по колебательному пути --- раствор в пробирке может, например, начать периодически менять свой цвет. Транспортные потоки распределятся в соответствии с вполне определенными строгими законами. А если диффузия происходит в некоторой горящей среде, то могут возникнуть причудливые структуры. Например, такие, как показано на рис.8. На нем представлена пространственная форма волн горения растущей амплитуды, сходящихся к центру симметрии и сохраняющих свою конфигурацию. Может быть, они похожи на таинственные симметриады, вырастающие из океана на планете Солярис? Изучение этих и некоторых других структур, не простое дело. Оно требует разработки новых математических методов и широкого использования компьютеров, однако подчас оказывается очень поучительным.

Имея дело с процессами, которые разворачиваются во времени и пространстве, мы сталкиваемся с новым элементом реальности --- формой возникающих структур. Мысли о совершенстве формы, соразмерности гармонии были одним из ключевых мотивов в познании природы.


Идея о связи геометрии с идеальными объектами, лежащими в основе мироздания, восходит к Платону. Эта идея была возрождена В.Гейзенбергом, намечавшим контуры будущей единой теории поля и элементарных частиц. Именно в различии формы электронных облаков в странном мире, придуманном Э.Шредингером и другими создателями квантовой механики, кроется разгадка многих парадоксов атомной физики.

В той необычной вселенной, где существуют структуры, показанные на рис.8, форма также играет ключевую роль. Она показывает, по каким законам простые структуры могут быть объединены в сложные. Форма определяет существование структуры. Замечательный факт, что для создания сложной структуры, развивающейся во времени, надо верно угадать ее форму. Количество вложенной энергии не играет здесь никакой роли.

Множество причудливых конфигураций вначале порождало у исследователей иллюзию того, что в этой вселенной можно построить структуры любой сложности. И одним из ключевых результатов анализа стало доказательство того, что в этой среде могут быть построены только эти структуры и никакие другие. Есть правила запрета. Попытки что-либо "навязать" этой системе или действовать методом проб и ошибок обречены на провал.

Не правда ли, здесь много аналогий? С экономическими, социальными, экологическими системами, где попытки "перестроить" или "создать заново", поразительно редко приводят к положительным результатам. С современной медициной, обратившейся к сверхслабым, "резонансным" воздействиям на организм, подчас более эффективным, чем сильнодействующие препараты. С философией Древнего Востока, где во главу угла ставилось выявление внутренних потенций целого и следование им.

Наш мир слишком сложен. В нем много законов сохранения. События в нем разворачиваются в гигантском интервале пространственных и временных масштабов. В нем поразительным образом сочетаются случайность и закономерность. И чтобы разобраться в нашем мире, очень полезно строить другие миры. Причудливые, необычные, парадоксальные. Наверное, это сродни искусству, где через уникальное и единичное удается постичь всеобщее, где гипербола и гротеск позволяют увидеть что-то важное и необычное. При этом дистанция между неведомым и очевидным подчас оказывается поразительно малой.

Итак, еще один мир. Его придумал в 1970 г. английский математик Джон Конвей и назвал игрой "Жизнь". Название связано с тем, что она имитирует рост, распад и различные изменения в популяции живых организмов. В эту игру читатель может поиграть, ничего не зная о каких-либо уравнениях, не пользуясь компьютером, а имея под рукой лишь лист бумаги в клетку. Хотя на компьютере все выглядит, конечно, красивее.

Рассматривается бесконечная плоская решетка квадратных ячеек --- клеток. Время в этой игре дискретно (t=1,2...). Клетка может быть живой или мертвой. Изменение ее состояния в момент (t+1) определяется состоянием ее соседей в момент t (соседей у каждой клетки 8, из них 4 имеют с ней общие ребра, а 4 --- только вершины). Правила таковы.

Если клетка мертва в момент времени t, она оживает в момент (t+1) тогда и только тогда, когда трое из ее восьми соседей были живы в момент t.

Если клетка была жива в момент времени t, она погибает в момент (t+1) тогда и только тогда, когда меньше, чем две, или больше, чем три соседние клетки, были живы в момент t.



Рис. 9. Столкновение планера со стационарной структурой в игре "Жизнь".

Чтобы читатель почувствовал, насколько причудливо могут развиваться события в этом мире, проследим за судьбой только одной конфигурации. Некоторые из "моментальных снимков" ее эволюции показаны на рис.9. "Домик" из четырех клеток в отсутствие движущейся структуры "планера" стоял бы на месте, не меняясь со временем. "Планер" двигался бы по диагонали, повторяя свою конфигурацию через каждые четыре шага. Однако им суждено было столкнуться. Число клеток вначале растет, захватывая все большую площадь, а потом уменьшается. Когда эволюция закончена, возникает несколько конфигураций, от времени не зависящих, и других, которые повторяют себя на каждом втором шаге. (Их называют "мигалками", на рис.9, соответствующем моменту времени t=182, они выглядят как три расположенные в ряд или в столбик живые клетки. На следующем шаге по времени "ряды" превратятся в "столбики", а "столбики" в "ряды", затем все повторится.)

Видно, что эволюция в этой игре с примитивными правилами, с локальными связями, включающими только ближайших соседей, может быть довольно сложной. Но этого мало. Математики доказали, что эта эволюция может быть сколь угодно сложной. Эта игра эквивалентна универсальной вычислительной машине. В принципе, имея достаточно большую область из таких клеток, с ее помощью можно проводить вычисления, как на компьютере.

Главной тенденцией в электронике стала миниатюризация. Возможно, в будущем элементы компьютеров станут сравнимы с размерами молекул, и связи в них будут возможны только самые простые, локальные. (Впрочем, тогда бы пришлось подумать о радиационных повреждениях, которые бы могли выводить их из строя. Ведь в отличие от живых организмов, электронные схемы не умеют корректировать, "лечить" тонкие повреждения на микроуровне. Пока не умеют.) Возможно, тогда такие игры, как "Жизнь", станут полезными для микроэлектроники.

Сейчас они полезны, например, при создании новых физических теорий. Вот только два примера, связанных с игрой "Жизнь".

Работа компьютера характерна тем, что мы не можем предсказать результат действия ряда программ, не выполнив их полностью. Такие алгоритмы называют вычислительно неприводимыми. Любая величина в нашем мире может быть измерена с конечной точностью, с конечным числом десятичных цифр. Существуют законы природы, определяющие программы, алгоритмы, по которым производятся действия с этими числами. Поэтому американский исследователь С.Уолфрем предлагает взглянуть на наш мир, как на гигантский компьютер. По его мысли, те процессы, в моделировании которых успехи невелики (а это хаотические турбулентные течения, вихри в атмосфере, экономические системы, биологическая эволюция), описываются неприводимыми алгоритмами. Не правда ли, рискованный полет --- от игры "Жизнь" до прогнозов погоды?

Другая теория, называемая теорией самоорганизованной критичности, обязанная своим появлением анализу игры "Жизнь" и другим играм такого типа, сейчас завоевывает все больше приверженцев. Ее результаты используют сегодня в космологии, гидродинамике, в геофизике для прогноза землетрясений и во многих других областях.

Модели такого сорта применяют, например, при анализе химических реакций на поверхности. В модели, исследованной М.С.Шакаевой, существует только три уровня концентрации. В этой модели также обнаружены движущиеся конфигурации --- "планеры". На рис.10 показаны два таких "планера" и "моментальный снимок" того, что произошло после столкновения. Не правда ли красиво?



Рис. 10. Столкновение двух "планеров" в среде, имитирующей колебательные химические реакции.


Нелинейные среды с положительной обратной связью

В химии, физике, биологии есть много примеров самоорганизации, но в очень редких случаях разработаны математические модели этих процессов. Ведь речь идет о понимании и копировании на моделях механизмов самоорганизации. Так, например, в замечательной колебательной химической реакции Белоусова-Жаботинского остаются плохо известными детали промежуточных реакций, их константы, хотя сама возможность колебательного режима следует из анализа упрощенных математических моделей. Например, из анализа математических моделей, построенных А.Д.Караваевым, работающим в лаборатории В.П.Казакова в институте органической химии Уфимского научного центра, следует, что изменение некоторых констант реакций на миллионные доли процента может радикально изменить тип наблюдаемого хаотического режима.

Само явление красиво, непривычно и потому загадочно. В пробирке (определенное время) периодически пробегает волна изменения цвета. Это означает, что хаотически движущиеся атомы и молекулы становятся периодически участниками каких-то согласованных процессов, которые, вероятно, очень быстро (как цепная реакция) развиваются и охватывают огромное число элементов среды, обеспечивая единое коллективное поведение. Не правда ли, достаточно глубокая аналогия с разнородным поведением людей, со своими интересами и волнами моды, социальными течениями, войнами и революциями, втягивающими огромные массы людей, часто даже против их воли?

Многие важнейшие открытия в науке 20-го столетия связаны с выявлением эффектов согласованного поведения (синергизмом) на макроуровне совокупностей отдельных элементов (атомов, электронов, клеток, особей), хаотически ведущих себя на микроуровне.

Например, в лазере возникает согласованный процесс излучения возбужденными атомами света одной длины волны и, главное, с одной фазой. Для обычного света характерны колебания электромагнитных волн разной длины и хаотическим образом меняющимися фазами (благодаря хаотическому поведению атомов-излучателей).

К согласованному поведению огромного числа элементов среды относятся возникновение смерчей в воздухе, конвективные ячейки на Солнце (гранулы), течения в океане и циклоны в атмосфере. Самопроизвольно возникающее согласованное поведение наблюдается и среди клеток организмов в процессе морфогенеза, среди элементов биоценозов или в социальных сообществах.

Но как объяснить и смоделировать новые свойства у образующегося целого? Как описать их структуры, их размер, форму или, возможно, спектр форм; законы их развития, вхождения в новые целостности и причины распада? Здесь новые возможности в понимании этих процессов дало применение нелинейных математических моделей и вычислительный эксперимент. Последнее связано с недостаточным развитием даже в современной математике аналитических методов исследования нелинейных моделей.

Важно отметить, что много новых явлений нелинейного мира было открыто в результате решения важных практических задач, в самой гуще научных, технических, военных проектов и исследований. Сюда, прежде всего, можно отнести задачи расчета процессов в атомных и водородных бомбах, ядерных реакторах. Среди других решенных задач можно выделить изучение различных явлений физики плазмы, процессов в установках управляемого термоядерного синтеза. Прогноз погоды, расчеты обтекания ракет, самолетов, автомобилей. Оптимизация процессов добычи нефти, процессов в лазерах и режимов работы реактивных двигателей. Расчеты траекторий ракет и возможностей космических полетов с посадкой и управлением роботами на Луне и Марсе. Несколько позднее были изучены модели ядерной зимы, проблемы потери контроля в СОИ, проведены расчеты многочисленных экономических, биологических, медицинских, социальных и экологических моделей.

Иногда высказывается мнение:"Да, ЭВМ, моделирование, вычислительный эксперимент применяется во многих областях техники и науки в разных странах мира. Но вот синергетика --- это очередное поветрие западной мысли в России". Как уже показано выше, развитие нелинейной математики, синергетики, а с ними и нового взгляда на мир и условия жизни в нем --- не очередная мода, а естественная стадия развития науки и культуры.

Но давайте все же на нескольких примерах покажем, что теория диссипативных структур, которую сейчас почти всегда в России связывают с работами А.Тьюринга, И.Пригожина, Г.Хакена, независимо развивалась в СССР и достигла больших результатов, как в области понимания механизмов самоорганизации, так и в практическом их применении в передовых областях науки и техники. Мало того, были открыты новые физические явления парадоксального характера и сформулированы неожиданные закономерности мира нелинейных процессов. В ряде случаев разработан новый аналитический, а не только численный, аппарат исследования нелинейных моделей. Так, например, в Институте Прикладной Математики АН СССР (теперь ИПМ им. М.В.Келдыша РАН), являвшемся в СССР пионером в области исследований с применением ЭВМ в новых областях техники и науки, совместно с ИТПМ (Новосибирск) СО АН СССР в начале 70-х годов было сделано открытие эффекта Т-слоя. Температурный слой (Т-слой) --- это самоподдерживающаяся диссипативная структура, т.е. локализованная на массе низкотемпературной плазмы область повышенной температуры, эффективно взаимодействующая с магнитным полем. Эффект ее самопроизвольного или индуцированного возникновения, а также условия и механизмы, обуславливающие это явление, были вначале установлены с помощью расчетов на ЭВМ и теоретического анализа модели процессов в плазме, затем зарегистрированы в Комитете по делам открытий в СССР как открытие N55, и, наконец, через несколько лет обнаружены в натурном эксперименте.

Обратим внимание, что первое издание на русском языке книги П.Гленсдорфа, И.Пригожина "Термодинамическая теория структуры, устойчивости и флуктуаций" вышло в 1973 г., а французский вариант был издан немногим раньше. Насколько плохо работы И.Пригожина и его сотрудников по диссипативным структурам были известны в СССР, можно судить по тому сопротивлению физической общественности, с которым были восприняты статьи и доклады исследователей Т-слоя в ведущих научных центрах и на международных конференциях. Хотя в СССР, так же как в США и Европе, интенсивно проводились работы по физике плазмы, и в линейном приближении давно были выявлены теоретиками многочисленные типы неустойчивостей, но никто теоретически не мог ответить на вопрос, что с этими неустойчивостями будет на развитой нелинейной стадии. Каковы будут размеры возникших структур, их форма, как они будут взаимодействовать друг с другом, какова физика плазмы со структурами? Хотя в целом ряде натурных экспериментов наблюдались структуры в диссипативной плазме, но их адекватного теоретического, а в большинстве случаев даже компьютерного, обоснования не существовало.

Однако, через несколько лет открытие Т-слоя, сделанное, можно сказать, не на кончике пера, а на экране компьютера, было почти одновременно обнаружено несколькими группами экспериментаторов. Использование эффекта Т-слоя позволило создать опытные установки нового типа магнитно-гидродинамических генераторов с заметно большим коэффициентом полезного действия, непосредственно превращающих энергию потока плазмы в электрический ток. Позднее вышли несколько работ соавтора открытия Т-слоя В.С.Соколова с сотрудниками, дающие новые нетрадиционные объяснения природы хромосферных вспышек на Солнце и сопровождающих их явлений через эффект Т-слоя.

Другой пример --- возникновение и разработка в работах научной школы академика А.А.Самарского в ИПМ АН СССР и на ВМК МГУ новых парадоксальных представлений синергетики, связанных с изучением явлений, сопровождающих развитие в нелинейной среде режимов с обострением. Любопытно отметить, что физическая и математическая теория режимов с обострением возникла на острие исследований по лазерному термоядерному синтезу.

Весьма небольшая часть работ, иллюстрирующих сказанное и отражающая применение компьютерного моделирования нелинейных процессов, приведена в списке литературы к введению.

Когда слушают на "репетиции" доклад студента или аспиранта, которому предстоит защищать диплом или диссертацию, то часто советуют обо всем упомянуть кратко, а на одном результате остановиться детальнее. Последуем и мы этому традиционному совету. Обсудим несколько подробнее теорию нелинейных сред с положительной обратной связью.

Эта теория весьма велика. Только представителям научной школы, работавшим над этими проблемами в Институте прикладной математики им.М.В.Келдыша РАН, Московском физико-техническом институте и Московском государственном университете принадлежит здесь около 500 работ. Построенная теория активно использовалась при исследовании задач физики плазмы, анализе проектов управляемого термоядерного синтеза, проблем лазерной термохимии и ряда других. Она привела к постановке многих необычных математических задач, решения которых обладают парадоксальными свойствами. Построенная теория послужила основой для интересных философских интерпретаций. Здесь же мы остановимся лишь на нескольких важных идеях и некоторых результатах, существенных для последующего изложения.

Принципиальным понятием в классической механике является материальная точка. Изменение ее состояния определяется вторым законом Ньютона, а само состояние полностью характеризуется шестью числами. Три числа задают координаты точки и три --- ее скорость. При этом большинство рассматриваемых объектов было таково, что преобразование

+t,

где некоторая постоянная скорость, не меняет хода процессов в них (математики говорят, что законы механики инвариантны относительно группы преобразований Галилея). При получении многих фундаментальных результатов естествознания, начиная с описания траекторий планет, традиционным предположением было допущение о несущественности диссипативных процессов, связанных с рассеиванием энергии. К ним относятся теплопроводность, трение, вязкость. Эти представления вошли в кровь и плоть современной науки и техники. В особенности, предположение о возможности описать объект с помощью конечного набора чисел (математики называют это гипотезой о конечномерности фазового пространства). Действительно, трудно представить себе, что, познавая мир, человек вынужден иметь дело с бесконечным набором параметров. Каковы эти числа и откуда они берутся, также на заре классической механики было понято.

Однако уже Лапласом для описания реальности было введено новое фундаментальное понятие --- сплошная среда. Это понятие является ключевым при описании процессов, которые развертываются не только во времени, но и в пространстве. При этом приходится считать, что для описания состояния каждой точки нужно знать несколько чисел.

В жидкости, например --- пять, характеризующих давление, температуру и три компоненты скорости. Если в вакууме распространяется электромагнитная волна, то нужно 6 чисел, три определяют электрическое поле и три магнитное, и т.д. Объекты такого типа принято называть распределенными в отличие от сосредоточенных, состояние которых характеризует конечный набор чисел. Для описания таких систем Лапласом был предложен новый класс математических моделей --- уравнения в частных производных. С помощью этого языка сформулированы выдающиеся достижения нашей цивилизации --- уравнения гидродинамики, уравнения Максвелла, уравнение Шредингера.

Распределенные системы или сплошные среды являются одним из наиболее сложных и интересных объектов современного естествознания. Представление о сложности процессов, которые могут иметь место в таких системах, дают картины течений жидкости (см. рис.11). Обратим внимание на причудливую геометрию наблюдаемого явления, на спонтанно возникающую упорядоченность, структуры. С более глубоким пониманием пространственно-временных процессов связан ряд высоких технологий и многие фундаментальные научные проблемы. Более глубокое понимание нерегулярных, турбулентных течений жидкости открыло бы дорогу к более быстрым и экономичным кораблям и самолетам. Совершенствование компьютеров и огромного большинства электронных систем неразрывно связано с технологией создания структур на микроуровне. Наконец, переход с молекулярного уровня на клеточный, на котором, вероятно, ждут разгадки многих тайн живого, связан с анализом не только временной, но и пространственной организации в сложной химической машине, каковой является клетка. И это только начало огромного списка. В этом списке есть и проблемы, непосредственно касающиеся будущего человечества. К уравнениям в частных производных, описывающим распределенные системы, относится ряд математических моделей демографии, социологии, экономической географии, науковедения. Их начали применять при описании исторических процессов.









Рис. 11. Во многих течениях возникают различные типы упорядоченности: a --- вихревая дорожка Кармана, появляющаяся при обтекании кругового цилиндра; б --- конвективные валики, наблюдаемые в подогретом снизу слое жидкости; в --- неустойчивость Бенара, приводящая к образованию шестигранных ячеек [28].

Большинство этих моделей нелинейны. Формально это означает, что исследуемые уравнения содержат нелинейные функции (линейные функции y=ax, z=ax+by и т.д., нелинейные y=sin x, y=ax2, z=+by, где a и b всюду некоторые числа). Для них несправедлив принцип суперпозиции (наложения), позволяющий "сшивать" решение более сложной задачи из решений более простых задач. Эти уравнения описывает ситуацию, в которой изменение внешних воздействий в k раз, в отличие от линейных, не приведет к пропорциональному отклику объекта. По существу, нелинейность означает огромное разнообразие поведения и богатство возможностей, --- пороговые эффекты, неединственность решений, существование хаотических траекторий, парадоксальный "антиинтуитивный" отклик при изменении внешних воздействий.

Мы имеем счастье жить в сложном и удивительном нелинейном мире. Огромную, вероятно, до сих пор не вполне осознанную, роль в его познании сыграли компьютеры, позволившие исследовать множество нелинейных математических моделей, описывающих нашу реальность. Возникла положительная обратная связь. Результаты компьютерного анализа приводят к рождению новых теорий, понятий, моделей. Изучение этих моделей с помощью вычислительных машин приводит к рождению теорий и моделей нового поколения и т.д.

Одним из принципиальных результатов этой "гонки", увлекшей немалую часть научного сообщества, стала концепция самоорганизации. Обратим внимание еще раз на картинки течения жидкости. В них видна организация и упорядоченность, симметрия. Отсюда напрашивается вывод, что для их математического описания нужно небольшое число переменных. Но в каждом случае это свои переменные. Какие они, как возникают, подчиняя себе остальные степени свободы, как изучать их динамику, исследует междисциплинарный подход, называемый теорией самоорганизации или синергетикой. Само слово и принципиальная роль в создании этого подхода принадлежат немецкому ученому Г.Хакену.

В самоорганизации, появлении упорядоченности, важную роль играют диссипативные процессы --- диффузия, вязкость, теплопроводность и множество других. Разумеется, физики всегда понимали роль этих явлений --- без трения нам бы не удалось ходить пешком, а без вязкости двигаться на весельной лодке. Однако представление о том, что эти процессы, уничтожающие порядок в простейших линейных системах, могут быть в нелинейном мире "архитекторами упорядоченности", до сих пор кажется парадоксальным. Чтобы подчернуть необычность этого взгляда, один из основоположников теории самоорганизации И.Пригожин назвал упорядоченность, возникающую в открытых нелинейных системах, далеких от равновесия, и существенно связанную с рассеянием энергии, вещества или информации, диссипативными структурами.

В ходе математического моделирования такие структуры были, вероятно, впервые найдены в 1952 г. Аланом Тьюрингом. Они были обнаружены в ходе математического моделирования одного из наиболее сложных и интересных биологических явлений --- морфогенеза. Морфогенез или клеточная дифференцировка замечателен тем, что в ходе деления и развития клеток, содержащих одинаковую генетическую информацию, возникает сложнейшая организация, каковой является организм.

А.Тьюринг предположил, что в основе морфогенеза лежат химические процессы. Распределение гипотетических химических реагентов --- активатора и ингибитора в первоначально однородной ткани, приобретая неоднородность, может "указать" клеткам, какие свойства в каких пространственных областях им следует приобретать. Уравнения, предложенные Тьюрингом, имели вид

ut = D1u + f (u,v)
vt= D2u + g (u, v) (1)+

Здесь u --- концентрация активатора, v --- ингибитора, D1 и D2 --- соответственно коэффициенты диффузии первого и второго вещества, f(u, v) и g(u, v) --- нелинейные функции, определяющие кинетику реакций между активатором и ингибитором,--- оператор Лапласа (), традиционно возникающий при моделировании диффузионных процессов.

После некоторого переходного периода возникали пространственно-неоднородные стационарные (т.е. не зависящие от времени) диссипативные структуры. Примерно такие, как показано на рис.12. Когда ответ известен, его можно пояснить на пальцах. Коэффициент диффузии активатора обычно выбирается существенно меньше, чем ингибитора. Поэтому последний "не успевает" стабилизировать процессы во всей области и "уследить" за активатором.



Рис. 12. Типичный пример стационарной диссипативной структуры в двухкомпонентной среде типа реакция-диффузия. Такие структуры возникают при математическом моделировании морфогенеза, описании ряда химических реакций, неустойчивостей в полупроводниках, расселении биологических видов по ареалу и во многих других задачах.

Тем не менее, возникновение таких структур требует достаточно тонкого взаимодействия положительных и отрицательных обратных связей. Первые должны сделать пространственно-однородное состояние неустойчивым и обеспечить возможность рождения структур. Вторые нужны, чтобы стабилизировать процессы вдали от равновесия и задать диапазон, в котором будут меняться концентрации.

В XX в. теория управления, кибернетика, экономика, социология и множество других дисциплин огромное внимание уделили механизмам, обеспечивающим отрицательные обратные связи. Именно они во множестве ситуаций позволяют сохранить "статус кво". Положительные обратные связи, на наш взгляд, оказались недооценнеными. Однако вначале появились оригинальные простейшие производственные технологии, где важно обеспечить спонтанный уход от равновесия, а затем и социальные, политические, экономические технологии, ориентированные на эти связи. Ярким примером успеха такого подхода влиятельные американские экономисты считают создание и развитие Кремниевой долины в Калифорнии, ставшей "законодателем мод" в микроэлектронике.

Возникает соблазн изучить действие нелинейной положительной обратной связи "в чистом виде", не привлекая каких-либо усложняющих факторов и отвлекаясь от множества подробностей, связанных с описанием отдельных систем. Эта работа и была проведена упоминавшейся научной школой в Институте прикладной математики, МГУ и МФТИ, к которой и относят себя авторы этой книги.

Наиболее яркими и важными оказались результаты исследования нелинейной среды, в которой есть только два конкурирующих процесса. Это нелинейный источник, отражающий положительную обратную связь --- Q(T), и диссипативный процесс, нелинейность которого определяется коэффициентом k(T)

Tt = (k(T)Tx)x + Q(T) (2)

Если эти функции имеют степенной вид:

Q(T) = q0, k(T) = k0, k0, q0,> 0,>0 (3)

то модель (2) называют моделью тепловых структур. Название связано с ее происхождением --- первоначально она представлялась как упрощенная модель ряда процессов в физике плазмы и в теории управляемого термоядерного синтеза. Однако генезис модели сейчас не важен и ее вполне можно трактовать как феноменологическое описание распространения информации о некоторой проблеме в научном сообществе.

При такой интерпретации "пространственная координата" x характеризует интенсивность контактов "удаленность друг от друга" членов научного сообщества, переменная t --- время, T --- плотность информации в научном сообществе. Смысл нелинейных зависимостей также весьма прост. Растущая функция Q(T) отражает тот факт, что чем больше мы знаем, тем больше шансов узнать что-то еще. Нелинейность поясняет простая притча:"Если у тебя есть яблоко, и ты отдал его мне, то яблок у тебя не осталось. Но если у нас есть по идее, и мы рассказали их друг другу, то у каждого стало по две идеи." Степенная зависимость k(T) отражает тот простой факт, что если не о чем рассказывать, то информация не раcпространяется k(0)=0, а чем значительнее достижения, тем быстрее узнает о них сообщество.

Обсудим ряд свойств модели (2) и (3). Первый парадоксальный результат можно получить, предположив, что все члены сообщества одинаково информированы --- Tx=0. Тогда

dT/dt = q0, T(0) = T0(4)

гдеT0 --- плотность информации в начальный момент времени. Решение этого уравнения существует только конечный промежуток времени, определяемый начальным значением T(0) (см. рис.13). После этого в игру должны вступать другие стабилизирующие факторы, и следует переходить к другим моделям (как мы увидим в четвертой главе, именно такая ситуация возникает при феноменологическом описании демографических процессов). Обратим внимание на замечательный характер кривых, соответствующих решениям уравнения (4). В течение длительного времени (специалисты называют его квазистационарной стадией) функция T почти не меняется, кажется, что вообще ничего не происходит. Но вблизи момента времени tf, называемого временем обострения, неустойчивость приобретает взрывной характер. Стандартный алгоритм прогнозирования, до сих пор применяемый в социальных науках --- "посчитай на сколько процентов изменялась величина за предыдущий промежуток времени; чтобы получить будущее изменение, надо домножить этот процент на текущее значение". Знаменитый прием планирования "от достигнутого" --- здесь неприменим.



Рис. 13. Решения уравнения (4) при различных начальных данных T_0. В каждом случае за конечный промежуток времени решение неограниченно возрастает.

Напротив, для линейного уравнения, предлагавшегося Мальтусом и его последователями для роста народонаселения

dn/dt n =n, n(0) = n0 (5)

он прекрасно работает. Решения этого линейного уравнения представлены на рис.14. Здесь решения также описывают некоторый рост. Но, во-первых, они существуют бесконечно долго. Во-вторых, роль начальных данных здесь не так драматична. Представим себе два решения уравнения (5), cоответствующие начальным данным n1(0) и n2(0). Соотношение между ними остается неизменным n1(t)/ n2(t)= n0(0)/ n2(0) и таким же, как вначале. Напротив, как бы ни была мала разница начальных данных для решения уравнение (4) T1(t) и T2(t), она будет стремительно расти T1(t)/T2(t), и вторая траектория "безнадежно отстанет" вблизи момента обострения первой. "Миры", в которых существуют эти решения, живут в разном темпе.



Рис. 14. Решение линейного уравнения (5) --- простейшей математической модели демографии при различных начальных данных n0. Эта модель дает экспоненциальный рост населения. Если зафиксировать интервал Deltat, то величины n(0), n(t), n(2t) образуют геометрическую прогрессию.

Рассмотрим теперь пространственно-распределенную систему, дополнив модель (2) и (3) начальными данными

-<x<, T(x, 0)=T0(x).

Будем считать, что существует значительная часть сообщества, которая не располагает информацией о данном научном направленииT0(x)=0 при x>b и x<a (см. рис.15). Происходящее в этом случае кардинально зависит от соотношения между скоростью производства новой информации и эффективностью ее распространения (или, в терминах обсуждаемой модели, от соотношения показателей степеней).

Типичная картина, наблюдаемая при =+1, показана на рис.15. Вначале информация распространяется. При этом информация во всей системе растет, однако в ее отдельных частях ее плотность может уменьшаться. Это может соответствовать тому, что часть активных исследователей начинает уделять основное внимание популяризации сделанного, научно-организационной работе. Но далее, начиная с некоторого момента, решение оказывается пространственно-локализовано. Профиль "плотности информации" сохраняет свою полуширину и форму. Так же, как решение уравнения (4), он развивается по такому закону, в соответствии с которым T(x,t) при некоторых значениях координаты x неограниченно возрастает за конечное время (такой закон называется ростом в режиме с обострением). Сохранение формы в ходе процесса позволяет говорить о том, что здесь мы имеем дело с появлением организации, с возникновением диссипативной структуры. Упорядоченность такого типа стали называть нестационарными диссипативными структурами, чтобы подчеркнуть их отличие от традиционных стационарных, не меняющихся со временем структур (как на рис. 12).



Рис. 15. Пример процесса в нелинейной среде, развивающегося в S-режиме с обострением. На рис. представлены профили функции T(x,y) в момент времени t1, t2 и т.д. Видно, что в середине возникает нестационарная диссипативная структура, имеющая постоянную полуширину; a --- формирование локализованной диссипативной структуры; б --- независимое развитие двух локализованных структур; в --- рост структуры с минимальным временем обострения; остальная часть профиля практически "замирает".

Смысл такого решения прост, --- в определенной области науки быстро развивается теория, математический аппарат или технология, которая успешно осваивается группой специалистов, работающих в этой области, и не выходит за рамки этого круга. Следуя сложившейся традиции, о таком решении говорят, что оно описывает процесс, развивающийся в S-режиме. Характерный признак этого режима --- сохранение полуширины возникающих диссипативных структур.

Другая область параметров<+1. Типичная картина показана на рис.16. Здесь решение также неограниченно возрастает. Однако оно описывает распространяющуюся волну растущей амплитуды. По мере приближения к моменту обострения эта волна охватывает все пространство.



Рис. 16. Пример процесса, идущего в HS-режиме с обострением. В среде возникают волны, амплитуда которых неограниченно растет при ttf .

Такое поведение получило название HS- режима с обострением. В "науковедческой" интерпретации оно может соответствовать очень крупному достижению, меняющему парадигму и влияющему на все сообщество (например, такому, как ньютонова механика), или очень удобной технологии, без которой становится трудно обойтись. Яркий пример --- быстрая "экспансия" персональных компьютеров в мировом научном сообществе. Либо такое поведение может соответствовать быстрому и эффективному обмену информацией, при котором "шила в мешке не утаишь", даже если оно невелико.

Исключительно интересным представляется противоположный случай>+1(так называемый LS- режим с обострением). Типичная картина представлена на рис.17. Решение вновь растет в режиме с обострением, оставаясь локализованным, однако его полуширина сокращается. Это соответствует тому, что научные исследования развиваются настолько быстро, что новое понимание оказывается сосредоточенным в рамках одной научной школы. Вспомним Сольвеевские конгрессы и рождение квантовой механики, ключевые результаты в которой были получены несколькими гигантами.



Рис. 17. Пространственно-локализованная диссипативная структура с сокращающейся полушириной. Такие структуры возникают, когда процессы идут в LS-режиме с обострением.

Обратим внимание на парадоксальность того мира, который описывает обсуждаемая модель. Чтобы четче выделить эти необычные свойства, их удобно сравнить с поведением решений классических уравнений и системой реакция-диффузия, предложенной А.Тьюрингом для описания морфогенеза.

Решения классических уравнений Максвелла, описывающих мир электромагнитных явлений и, в частности, распространение электромагнитных волн в простейшем, одномерном случае, имеют вид

=(x - ct).

При этом функция может быть "любой" из очень широкого класса. Среда как бы "запоминает" ее и переносит со скоростью c. Детали и особенности начальных данных не будут "забыты". Время однородно и следующий момент в этом бесконечном ряду ничем не хуже предыдущего. Возникновение "стрелы времени", необратимых процессов весьма непросто объясняется в классической механике.

Решения, представленные на рисунках, имели вид

T=g(t)f, = (--1)/(-1), g(t),

либо стремились к ним, когда время стремилось к моменту обострения tf. Слово "стремились" означает, что при разных начальных данных в среде могут возникнуть одни и те же диссипативные структуры. Несущественные детали будут "забыты" этой "агрессивной" средой. Малые возмущения либо структуры меньшей амплитуды не успеют развиться до момента обострения (см. рис.15). Это типичная ситуация, которую часто описывали историки науки и литературоведы, --- в истории наибольшее внимание привлекают "вершины", первые имена. Их влияние на следующую эпоху порой оказывается гораздо больше, чем на современников. История подчас выступает как безжалостный редактор. Кроме того, в обсуждаемой модели время неоднородно. Оно имеет "начало отсчета", а также конец отсчета --- время обострения.

Итак, в нашем случае структура с меньшим временем обострения "выигрывает". Аутсайдеры остаются "вечно развивающимися". На первый взгляд кажется, что в этом случае структуры "разного возраста", различного уровня развития, в принципе не могут быть объединены. Однако это не так! В этой диссипативной сильно нелинейной среде существуют законы, по которым простейшие структуры могут быть объединены в более сложные (см. рис.18). Пример объединения двух простых структур в сложную представлен на рис.18. В настоящее время в футурологии, глобальной динамике часто упоминается термин "коэволюция", понимаемый как совместное изменение, взаимодействие в ходе развития. Коэволюция человека и природы, коэволюция культур, регионов с разным уровнем развития, коэволюция технологий и цивилизационных императивов. В этой простейшей среде мы также видим пример коэволюции, позволяющий сложному развиваться согласованно, не распадаясь на простейшие части.



Рис. 18. Характерный пример эволюции сложных нестационарных структур. Такие структуры могут возникать, когда процессы идут в LS-режиме с обострением.

newpage Отдадим себе отчет, что это совпадает с нашим интуитивным представлением о таких сложных системах, как общество, организм, биоценоз, научное сообщество, где целое может существовать только потому, что части объединены сотнями положительных и отрицательных обратных связей.

В простейших случаях можно получить оценку числа возможных структур. В обсуждаемой одномерной модели оно определяется соотношением

N=[S-[[S]/S]]+1,

где S=(-1)/(--1); [S] --- целая часть числа S.

Очевидно, при+1, S, т.е. число структур в этих простейших нелинейных средах огромно.



Рис. 19. Типичный вид бифуркационной диаграммы, возникающей в системах типа реакция-диффузия вида (1). Сплошными линиями показаны ветви, на которых лежат устойчивые решения; пунктиром --- ветви неустойчивых решений.

Было бы естественно трактовать эволюцию, развитие прогресса как рост разнообразия, усложнения, увеличение числа функциональных единиц. В частности, в другой базовой модели, в системе Тьюринга, имеющий вид (1), усложнение мыслится следующим образом (см. рис.19). Здесь медленное изменение параметра B (времени с начала развития или длины ткани) вместе со случайными возмущениями как бы "ведет" систему по бифуркационной диаграмме. ( Бифуркационной диаграммой называется зависимость одной из величин, характеризующих решение, от параметра. На рис.19 M --- это амплитуда решения. Сплошным отмечены устойчивые ветви, пунктиром --- неустойчивые.) Выбор из устойчивых ветвей вблизи точки бифуркации происходит под воздействием малых случайных возмущений. Если параметр B --- длина области, то с его увеличением (что можно интерпретировать в модели как рост ткани) число максимумов у возникающей диссипативной структуры растет. (Обычно предполагается, что внешний параметр B меняется настолько медленно, что решение успевает достичь состояния, близкого к стационарному, не зависящему от времени.) Можно сказать, что тип структур и переход от простейших к более сложным мы "задаем руками". Камнем преткновения для большинства моделей морфогенеза такого типа является явление регенерации --- восстановление ряда органов у животных. Организм как будто бы помнит в этом случае свой "проектный" размер, и восстановление утраченного останавливается именно тогда, когда этот размер достигнут.

Способ управления процессами в такой среде тоже ясен, --- чтобы создать в ней среде сложную упорядоченность, вообще говоря, надо менять внешний параметр B. Если же такой возможности нет, то надо посмотреть по бифуркационной диаграмме, какие типы упорядоченности допускает при этом значении система, и управлять начальными данными, чтобы в конце концов возникла желаемая структура. Остальные варианты, о которых мы тоже поговорим, требуют более сложного управления.

Ситуация в модели тепловых структур, которую мы интерпретировали как динамику информированности в неком научном сообществе, принципиально иная. Параметры, определяющие свойства среды ( и) предполагаются фиксированными. И все сложные структуры существуют в одной нелинейной среде, т.е. среда является носителем форм организации. Это близко к представлению идеальных форм Платона, несовершенное воплощение которых мы видим в реальности. Эта идея проводилась в свое время Гейзенбергом, который искал нелинейное уравнение, решения которого позволяли бы предсказывать спектр масс элементарных частиц.

Все сложные структуры в этой модели неустойчивы. Чтобы они существовали, нужно правильным (как иногда говорят, резонансным) образом задать начальные данные. На сцену выходит геометрия, дающая гораздо больше возможностей, чем управление параметрами и свойствами среды. В одной и той же среде возможны разные типы организации. Прежде чем что-то создавать, надо их знать.

Свойство неустойчивости, которое еще два десятка лет считалось большим пороком модели, сейчас выступает в несколько ином свете. Устойчив ли наш мир, организм, общество, психика? После того, как ученые всерьез начали искать свидетельства нестабильности, оптимистичный ответ:"Конечно, да!" --- вызывает сомнение. Приходится уточнять, в каком смысле система устойчива, относительно каких возмущений, на каких временах. Специалисты по теории управления хаосом, одному из бурно развивающихся направлений нелинейной динамики, сравнивают управление многими сложными социальными и техническими системами с ездой на велосипеде. Это системы, которые статически неустойчивы, но движением которых вполне можно управлять. Это изменение мировоззрения отражает и название одной из работ лауреата Нобелевской премии И.Пригожина --- "Философия нестабильности".

Этот взгляд приходит в противоречие с одним распространенным мифом общественного сознания относительно "естественного отбора всего лучшего", который, например, может осуществлять рынок или История. В нашей стране за последние десять лет было разрушено много важных социальных институтов и структур. Однако, несмотря на горький опыт, со страниц газет и с экранов телевизоров то и дело объясняют, что не очень-то эти структуры были и хороши, раз не смогли постоять за себя. Это неверно. Любая сложная система, включая рыночную экономику, западную цивилизацию или "открытое общество", имеет свою ахиллесову пяту, свои болевые точки. В режиме нормального функционирования она старается их надежно прикрыть и защитить. Выбор сегодня обычно происходит не между добром и злом, не между стабильностью и изменчивостью, а между б'ольшим и меньшим злом, между различными неустойчивыми траекториями, за которые приходится платить разную цену.

Обсуждаемая модель отражает еще одну коллизию науки конца века. Триумфом химии стало открытие универсальных кирпичиков --- элементов, из которых построена Вселенная; физика элементарных частиц тоже преуспела в изучении первооснов вещества, --- этот список успехов анализа, выделения простейшего, можно продолжить. Но почему этих кирпичиков столько, а не больше? И каковы законы синтеза, объединения. Почему в малые работоспособные группы объединяются так, а не иначе? Почему не возникает далеких стабильных трансурановых элементов? Каким законам природы это противоречит? Почему в развитых странах не возникает одной "сверхмонополии", полностью контролирующей, к примеру, всю автомобильную промышленность или компьютерную индустрию? Эти вопросы, впрямую связанные с проблемой организации процессов, людей, структур, являются трудными для современной научной парадигмы. Их XX в. оставляет в наследство своему преемнику. И в этой связи, каждый случай, где в законах организации удается разобраться в деталях, представляется весьма ценным. Таким случаем и является обсуждаемая модель.

В этой модели есть еще один парадоксальный режим. Допустим, что нелинейность очень велика (>+3), работы в рассматриваемом научном направлении очень перспективны. При этом процессы могут идти в виде волны падающей амплитуды (см. рис.20) (HS-режим без обострения). От конкретных результатов сначала проблема переходит на уровень "научного фольклора", а потом складывается ситуация, когда идеи "витают в воздухе" и никак не найдут, куда приземлиться. Но эта ситуация неустойчива, --- небольшая группа энтузиастов, небольшой "студенческий проект" и ситуация радикально меняется, возникает быстрый процесс (реализуется LS-режим с обострением). Наверное, каждый может припомнить десяток ситуаций, когда классик в науке сделал то, что "все предвидели", про что "где-то слыхали", но до чего просто "руки никак не доходили".



Рис. 20. HS-режим без обострения, возможный, когда>+3. Решение существует бесконечно долго, амплитуда распространяющейся волны уменьшается. vspace-3mm endfigure

С обсуждаемой моделью связано много странных и удивительных вещей. С ней связано начало нескольких изящных математических теорий, любопытные физические эффекты, возможности создания оригинальных технологий. Она как бы притягивает новых исследователей, являясь полигоном и пробным камнем для новых подходов. Приведем только один пример такого сорта.

Часто задают следующий "неуместный" вопрос:"Почему следует всерьез относиться к решениям одной, пусть даже очень красивой задачи, в которой нелинейные зависимости имеют совершенно конкретный вид? Ведь степенные функции --- это капля в океане всех возможных нелинейностей". И это действительно так. Более того, этот вопрос является очень общим. Огромное количество фундаментальных законов определяются степенными нелинейностями. Закон всемирного тяготения, закон Кулона и прочие, прочие, прочие. Если бы притяжение зависело от расстояния не по закону обратных квадратов, то орбиты планет Солнечной системы, к примеру, были бы незамкнуты (впрочем, здесь есть еще один выделенный степенной показатель). Исследователи так называемого антропного принципа установили, что для того, чтобы во Вселенной мог появиться человек, мировые константы должны были быть подогнаны очень точно. Но степенные зависимости в фундаментальных законах природы представляются еще более важными. Почему же нашему миру так повезло? В общем случае на этот вопрос нет хорошего ответа.

Однако в частном случае обсуждаемой модели он есть! Представим себе, что нелинейные функции k(T) и Q(T) нелинейны и решение растет в режиме с обострением. Математическая теория, принципиальный вклад в создание которой внес В.А.Галактионов, показывает, что при стремлении к моменту обострения задача вырождается. Ее решение начинает вести себя либо как решение уравнения с экспоненциальными источниками, либо как некоторое уравнение типа Гамильтона-Якоби (уравнения такого типа обычно возникают в классической механике). Либо как исходная задача со степенными источниками! И только в последнем случае есть сложные структуры. Ситуация здесь оказывается похожа на головоломку, которая имеет парадоксальное, но единственное решение.

Ну вот, наверное, и все об этой модели --- одном из "кубиков", который есть в "конструкторе" нелинейной динамики. В одних случаях (как при описании роста народонаселения, он применим непосредственно), в других (как при моделировании ряда исторических процессов или при описании систем расселения) он указывает направление движения, в третьих выступает как интригующая метафора.


Смысл резонанса

В конце этой главы сформулируем и обсудим вопрос, который не раз возникал у авторов этой книги и, вероятно, у многих специалистов по нелинейной науке. Почему взгляды и представления, выработанные при исследовании весьма узкого класса математических моделей небольшого круга явлений, выдвигаемые несколькими научными школами, оказывают возрастающее влияние на современную науку и на другие области культуры? Почему результаты анализа систем реакция-диффузия, простейших отображений философы воспринимают как оригинальную метафору, физики --- как стимул для поиска новых явлений, математики --- как постановки новых проблем в своей области? Живой отклик биологов, астрофизиков, экологов, политологов, представителей многих других дисциплин убеждает, что это не случайность.

Подчеркнем парадоксальность этой ситуации. Неклассическая наука, связанная с созданием теории относительности и квантовой механики, очень быстро и глубоко изменила мировоззрение. Вместе с тем обе теории дают адекватное объяснение, которое не может быть получено в классических рамках, для весьма экзотической части реальности. С движением при околосветовых скоростях, измерениями на микромасштабах, не говоря уже об излюбленном объекте специалистов по общей теории относительности --- черных дырах, с которыми мы в повседневной жизни встречаемся далеко не каждый день. Да и физикам приходится прилагать немалые усилия, чтобы экспериментально изучать такие объекты.

Вместе с тем философы и естественники, занявшиеся осмыслением результатов неклассической науки, оказались правы. Знание таких деталей мироздания дало новые возможности, оказалось огромной силой. Атомные бомбы и лазеры открывают огромный список воплощений этого знания.

Нелинейная наука, которую философы иногда относят к постнеклассической, зиждется на еще более зыбком основании. На результатах компьютерного моделирования и теоретического анализа необычных явлений в физике, химии, биологии, социальной сфере. Разумеется, многие эксперименты, новые алгоритмы, фундаментальные теории все чаще опираются на образы и методы нелинейного мира. Вновь философы и методологи стремятся увидеть тенденции и перспективы, осмыслить движение. Трудно сказать, какой Силой вооружит это Знание. Может быть, это будут системы прогноза и мониторинга, предупреждающие об опасностях и позволяющие избежать роковых ошибок в управлении. Может быть, это будет новое поколение компьютеров и интеллектуальных систем, в чем-то похожих на "братьев наших меньших". Может быть, нас ждет новое поколение материалов, радикально меняющих наши возможности. Может быть, впереди новый уровень понимания и моделирования биологических процессов, а с ним изменение качества и увеличение продолжительности жизни? Сегодня трудно заглянуть за горизонт.

Однако не только погоня за будущей силой объясняет резонанс в культуре и общественном сознании, связанный с нелинейной наукой. В нелинейной науке формируется, на наш взгляд, новая познавательная модель.

Американский историк науки Дж.Холтон обратил внимание на то, что в ходе развития наук меняются наборы фактов и теорий, которые считают наиболее важными. Однако неизменными остаются некоторые инварианты макротемы, общие для различных дисциплин. Таковы, например, темы эволюции (простых форм в сложные), атомизма (выделения простейших элементов, объясняющих свойства целого). В 1980 г. А.П.Огурцов ввел термин "познавательная модель", который можно пояснить следующим образом: "если макротема носит общенаучный характер и включает в себя моделирование (т.е. объясняет целый ряд феноменов через их сопоставление с каким-то исходным феноменом, который более понятен), то она является познавательной моделью. Познавательная модель служит в качестве способа упорядочения и истолкования конкретного материала, причем способ этот оказывается общим для ученых самых разных специальностей и убеждений. Тем самым, познавательная модель служит важной характеристикой эпохи" [10].

А.В.Чайковский выделил в науке Нового времени несколько познавательных моделей, которые иногда конкурируют в различных дисциплинах, иногда мирно сосуществуют, дополняя друг друга. Одну из первых моделей он назвал схоластической. В рамках барокко мир воспринимался в виде огромной, созданной Господом книги, и образ книги делался моделью многочисленных сложных понятий. Галилео Галилей имел в виду этот образ, когда говорил, что книга Природы написана языком математики. При таком подходе на первый план выходят шифры, коды, ключи, которые позволяют понять смысл текстов, предлагаемых природой, людьми, историей. Плодотворность такого подхода была продемонстрирована в молекулярной биологии, установившей поразительное единство генетического кода. Попытки выяснить смысл текста привели к выдающимся открытиям и таким гигантским исследовательским проектам, как "Геном человека". Но кто и как читает текст, даже если он полон глубокого смысла? Как живое реализует инструкции, записанные в геноме и содержащиеся в каждой клетке? Для этой познавательной модели характерно представление об огромной власти и могуществе, которые получают те, кто смог прочесть текст.

<< Пред. стр.

стр. 2
(общее количество: 5)

ОГЛАВЛЕНИЕ

След. стр. >>