<< Пред. стр.

стр. 3
(общее количество: 5)

ОГЛАВЛЕНИЕ

След. стр. >>

Механическая модель, восходящая к Р.Декарту, трактует Вселенную, человека, общество как некоторые машины. И.Ньютон сравнивал Вселенную с часами, которые завел Господь. В такой модели мира можно разобраться, выяснить что существующие "механизмы" могут, а что нет, как за ними следует ухаживать и что еще в этом мире можно сконструировать. Инженеры любят повторять фразу, приписываемую Леонардо да Винчи: "Все работает не так, как рассчитано, а так, как сконструировано". Просвещение должно дать инструкции и ответы на задачи, предложенные природой. Несовершенство мира связано с тем, что этим инструкциям просто не следуют, а не следуют потому, что не знают. Просвещение позволяет сообщить их обществу и тем значительно улучшить жизнь. Время выступает как ничем особенно не выделенный параметр в уравнениях. Будущее вполне предсказуемо, если располагать эффективными вычислительными системами. Достаточно пролистать школьные курсы физики, химии, астрономии, чтобы осознать плодотворность этой модели.

Однако в XVIII --- начале XIX в. на сцену выходят случай, законы больших чисел, статистика. Образ рынка, где есть балансовые соотношения и все, что допускается ими, разрешено, становится общим местом в пушкинскую эпоху. Статистическая физика и "гиббсовский" стиль мышления в различных науках, от экономики до математики, созвучен излюбленному образу культуры XIX века --- Карточной игре [12]. Эту модель жизни М.Ю.Лермонтов характеризует следующими строками:

"Что ни толкуй Вольтер или Декарт ---
Мир для меня --- колода карт,
Жизнь --- банк; рок мечет, я играю,
И правила игры я к людям применяю".

Конец XX в. показал ограниченность этих познавательных моделей, их неполноту и неприменимость ко многим проблемам, которые приходится решать. Это естественно. Мировоззрение людей, которые веками живут, следуя традиции, и не имеют больших возможностей повлиять на свою судьбу, и тех, кто может поворачивать реки, срывать горы и необратимо менять биосферу, должно быть различным. Они решают разные проблемы, и им угрожают разные опасности.

Это очень остро почувствовали представители естественных наук, и прежде всего те, кто занимается математическим моделированием, --- многим из них приходится иметь дело с широким кругом проблем, от проблем стратегической стабильности и проектов экономических реформ до конкретных физических процессов или технических конструкций. Эйфория по поводу возможностей современных компьютеров, вычислительного эксперимента сменилась пониманием ограниченности возможностей получить ответы с помощью компьютера и своих способностей задавать принципиальные вопросы. В одной из бесед Н.Н.Моисеев выразил это примерно так: "Когда нам стало ясно, что прямая имитация многих процессов попросту невозможна, то возникла потребность в новых понятиях и концепциях".

Поиск этих концепций, новых парадигм, новых познавательных моделей ведется на разных направлениях. Один из подходов --- фундаментальное изменение методологии. Быть может, при анализе сложных систем классическая "черно-белая" гегелевская триада:"тезис --- антитезис --- синтез" должна уступить более сложным схемам. Например, опирающимся на "нечеткие логики" или тринитарную методологию. В рамках последней, активно развиваемой в России Р.Г.Баранцевым, рассматриваются соотношения не между парами категорий, а между тройками. При анализе метода или алгоритма можно выделить точность, простоту и универсальность (область применимости). Эти требования противоречивы, и третья категория часто выступает "арбитром" в "споре" между первыми двумя категориями [20].

Другой подход развивается А.В.Чайковским, предлагающим новую познавательную модель, основанную на экологическом императиве, на изменении этических норм. В их основе --- отношение к миру, как к саду, в котором необходима гармония [10].

Наконец, можно, отправляясь от опыта реализации крупных научно-технических проектов и осмысления исторического пути развития человечества, строить новую философско-методологическую концепцию. По-видимому, глубоко и последовательно этот подход развивается Н.Н.Моисеевым в подходе, называемом универсальным эволюционизмом [29].

Однако нелинейная динамика, синергетика, как ее представляют авторы, сегодня не находится на этом уровне обобщений. Она дает пока отдельные примеры, образы поведения сложных нелинейных систем и методы их исследования. Ее можно, пожалуй, сравнить со своеобразной натурфилософией компьютерной эры. Мифы давали в свое время примеры, образцы типичных ситуаций, рекомендации, как следует действовать, когда попытка опереться на логику и рациональные рассуждения не удается.

Нелинейная динамика предлагает базовые модели, новые понятия и методы, которые могут быть применимы в данной ситуации, а могут и не быть. Которые могут стать основой построения новой нелинейной познавательной парадигмы, а могут остаться отдельными находками в различных дисциплинах.

Приведем пример. Излюбленный образ синергетики --- бифуркационная диаграмма. Теперь представим, что параметр --- время, а переменная А характеризует ключевую переменную, определяющую состояние системы. В точках бифуркации происходит выбор и процессы другого уровня, не отраженные на диаграмме (шумы, случайности, управляющие воздействия могут сыграть ключевую роль). Это значит, что путь развития неединственный, что можно в нужный момент вмешаться в ход событий и изменить его. Будущее оказывается неединственным. Останется ли этот образ метафорой, станет руководством к действию для тех, кто будет определять точку бифуркации и воздействовать на систему, либо окажется основой нового алгоритма или технологии --- зависит от специалистов, которые будут применять общие идеи нелинейной динамики в своей конкретной области. Пока остается констатировать, что эти общие идеи порой оказываются очень полезны.

Одна из причин резонанса, который получила нелинейная динамика, состоит в том, что она дает новый взгляд на развитие науки, на возможность описать явления природы. Фундаментальный вопрос состоит в том, почему, обладая весьма скромными возможностями, мы неплохо ориентируемся и во многом успели разобраться за последние 40 веков? Почему иногда среди огромного множества сложных взаимодействующих факторов и сотен тысяч переменных удается выделить наиболее важные процессы и ключевые факторы? Ответ нелинейной динамики состоит в том, что во множестве случаев происходит самоорганизация, связанная с выделением параметров порядка. И нелинейную среду, потенциально обладающую бесконечным числом степеней свободы, удается описать динамической системой с конечным, а иногда и небольшим числом переменных. Рынок с сотнями тысяч агентов и миллионами товаров моделировать с помощью кривых спроса и предложения. (Взгляд на экономику, как на самоорганизующуюся и саморазвивающуюся систему оказывается весьма плодотворным, как показывают работы научной школы А.А.Петрова [19].)

Несмотря на, казалось бы, внутринаучный характер проблемы выделения параметров порядка, она оказывается исключительно важной. Подходы, развиваемые нелинейной динамикой, дают надежду на то, что можно успешно действовать в океане уже имеющихся знаний, проектов, сведений что "информационный джинн" может быть укрощен. Библейская мудрость толкует про время "разбрасывать камни" и "время собирать камни". Если XX в. прошел под знаком "разбрасывания камней", рождения сотен научных направлений на стыках научных дисциплин, то в XXI в. будущее науки будет определяться тем, насколько успешным окажется междисциплинарный синтез, насколько удачно будут "собраны камни".

Нелинейная наука дает для этого хорошие шансы. Шансы на то, что огромный потенциал, накопленный математикой и естественными науками, окажется востребованным и полезным при ответе на ключевые вопросы, касающиеся нашего бытия. Дает шанс гуманитарным наукам на то, что мы, наконец, научимся извлекать уроки из истории и пользоваться разумом там, где это более всего необходимо. Таковы ожидания.

Цивилизация стоит на пороге информационного будущего. "Виртуальная реальность" со средствами массовой информации, электронной почтой, глобальными компьютерными сетями уже существенно изменила наш мир. Моделирование, имитация, компьютерные игры, средства представления информации вышли на первый план. Но это именно те средства, которыми первой начала пользоваться нелинейная наука. И от нее ждут новых идей в строительстве "информационного будущего".

Кроме того, классическая и неклассическая наука обычно имела дело с одним уровнем описания, атомным или ядерным, индивидуальным или социальным. Однако высокие технологии, с которыми связываются надежды на выживание, обычно имеют дело с несколькими уровнями организации материи. Лазеры заставляют "работать" на макроуровне квантовые эффекты. Технологии создания желаемых микроструктур уже сейчас открывают путь к использованию высокотемпературной сверхпроводимости и к новым поколениям материалов. Открываются новые пути к воплощению "виртуальной реальности", рожденной за экранами дисплеев и в лабораториях, в обыденную жизнь. То же касается социальных технологий. Технологические установки и национальные традиции, касающиеся индивидуальной психологии, структуры личности, позволили реализовать ряду государств "экономическое чудо" за весьма небольшой срок. И вновь наибольший опыт описания и анализа процессов, развивающихся и взаимодействующих на нескольких структурных уровнях, накоплен нелинейной наукой.

Сейчас трудно очертить контуры "нелинейной парадигмы" или "нелинейной познавательной модели". Порой она кажется гигантской воронкой, вбирающей задачи, методы, идеи многих различных дисциплин, выводя на научную сцену новые модели и представления. Впрочем, часто трудно отделить новое от хорошо забытого старого. Работы Ю.А.Данилова [21], статьи Б.Н.Пойзнера [23], книга И.В.Андрианова и Л.И.Маневича [20] позволяют увидеть глубокие философские, культурные, физические корни нелинейных идей.

Нелинейная наука дает надежду на построение глубоких конкретных междисциплинарных подходов. Эти подходы, может быть, позволят избежать научному сообществу участи строителей Вавилонской башни. И это важно.


Литература

1. Николис Г., Пригожин И. Самоорганизация в неравновесных системах. М.: Мир, 1979.
2. Хакен Г. Синергетика. М.: Мир, 1980.
3. Самарский А.А., Галактионов В.А., Курдюмов С.П., Михайлов А.П. Режимы с обострением в задачах для квазилинейных параболических уравнений. М.: Наука, 1987.
4. Современные проблемы математики//Новейшие достижения. Серия: "Итоги науки и техники". М.: ВИНИТИ, 1986 (1987). Т.28.
5. Ахромеева Т.С., Курдюмов С.П., Малинецкий Г.Г., Самарский А.А. Нестационарные структуры и диффузионный хаос. М.: Наука, 1992.
6. Новое в синергетике. Загадки мира неравновесных структур. М.: Наука, 1996.
7. Компьютеры, модели, вычислительный эксперимент. М.: Наука, 1988.
8. Компьютеры и нелинейные явления. М.: Наука, 1988.
9. Наука, технология, вычислительный эксперимент. М.: Наука, 1993.
10. Чайковский Ю.В. Познавательные модели, плюрализм и выживание// Путь. 1992. N1, c.62-108.
11. Артур У. Механизмы положительной обратной связи в экономике// В мире науки. 1990. N4.
12. Лотман Ю.М. Беседы о русской культуре. Быт и традиции русского дворянства (XVIII --- начала XIX века). Санкт-Петербург: Искусство СПТ, 1994, c. 136.
13. Turing A. The chemical basis of morphogenesis// Phyl. Trans. Roy. Soc. L. 1952. V.237, p.137-230.
14. Mandelbrot B.B. Fractals: form chance and dimension. San Francisco.: Freeman Comp. 1977.
15. Малинецкий Г.Г. Хаос, структуры, вычислительный эксперимент. М.: Наука, 1997.
16. Гленсдорф П., Пригожин И. Термодинамическая теория структуры, устойчивости и флуктуаций. М.: Мир, 1973.
17. Фракталы в физике. М.: Мир, 1988.
18. Малинецкий Г.Г. Проект "Информхаос". Препринт РОУ. 1992.
19. Петров А.А. Экономика. Модели. Вычислительный эксперимент. М.: Наука, 1996.
20. Андрианов И.В., Маневич Асимптология: идеи, методы, результаты. М.: Аслан, 1994.
21. Данилов Ю.В. Льюис Кэррол как нелинейное явление// Изв. ВУЗов. Прикладная нелинейная динамика. 1996. Т.4. N.1, c.119-125.
22. Короновский А.А., Трубецков Д.И. Нелинейная динамика в действии: как идеи нелинейной динамики проникают в экологию, экономику и социальные науки. Саратов: ГосУНЦ "Колледж", 1995.
23. Пойзнер Б.Н. О субъекте самоорганизации// Изв. ВУЗов. Прикладная нелинейная динамика. 1996. Т.4. N4.
24. Самарский А.А., Михайлов А.П. Математическое моделирование. М.: Наука, 1997.
25. Fraser A.M., Swinney H.L. Independent coordinates for strange attractors from mutual information// Phys. Rev. A. 1986. V.33. N2, p.1131-1140.
26. Малинецкий Г.Г., Рузмайкин А.А., Самарский А.А. Модель долговременных вариаций солнечной активности. Препринт ИПМ АН СССР, 1986, N170.
27. Dynamic pattern formation in chemistry and mathematics. Aesthetics in the sciences. Dortmund.: Max-Plank-Instur fur Ernahrungsphysio-lo-gie, 1988.
28. Ван-Дейк М. Альбом течений жидкости и газа. М.: Мир, 1986.
29. Моисеев Н.Н. Современный рационализм. М.: НГВП КОКС, 1995.



Глава 2.

Возможна ли теоретическая история?

1.1 Сослагательное наклонение
1.2 Нелинейная динамика --- ключ к теоретической истории?
1.3 "Историческая механика" и синергетика


1.1 Сослагательное наклонение

История --- одна из самых удивительных вещей. Калейдоскоп империй, битв, царей, ничтожеств, авантюристов, величия, подлости, равнодушия. Поражает наличие похожих сценариев действий исторических лиц. Одни и те же амплуа, одни и те же сюжеты. Иногда просто кажется, что актеры играют один и тот же спектакль среди новых декораций.

Начиная со времен Геродота, не утихают споры о сути истории. Плутарх полагал, что история должна давать нравственные примеры. Один из блестящих умов XX в., французский поэт Поль Валери считал, что "история --- самый опасный продукт, вырабатываемый химией интеллекта. Свойства ее хорошо известны. Она вызывает мечты, опьяняет народы, порождает в них ложные воспоминания, усугубляет их рефлексы, растравляет их старые язвы, смущает их покой, ведет их к мании величия или преследования и делает нации ожесточившимися, спесивыми, невыносимыми и суетными".

Однако в наше рациональное время все чаще задается вопрос о смысле истории. В России его задают особенно часто, поскольку многие сограждане наконец поняли, что у них на глазах произошли перемены исторического масштаба. Как говорили на Востоке, изменился цвет времени.

В размышления о смысле истории фундаментальный вклад был внесен в нашем веке британским историком Арнольдом Тойнби. Значение этого вклада признают как сторонники выдвинутой концепции, так и оппоненты. Он предложил рассматривать историю как рождение, развитие, расцвет и угасание нескольких слабо взаимодействующих цивилизаций. Предельно упрощенно идею этого подхода можно пояснить следующим примером. Разные народы, живущие в одном регионе, имеют дело со схожими проблемами. Например, на некоем этапе города-государства древней Греции столкнулись с нехваткой продовольствия. Это был вызов Истории. Стандартный ответ, которым воспользовались большинство городов-государств --- создание колоний на новых землях. Такие военизированные поселения имели много шансов на успех, поскольку жители колонизируемых территорий обычно значительно отставали по части вооружений и организации дела. Иной ответ предложила Спарта. Расширить свои владения не за морем, а в Греции, отвоевывая земли у отлично вооруженных народов, живших на них веками. Но это требует совершенно другой морали, другой организации жизни. Для этого всем мужчинам надо есть вместе похлебку из бычьей крови. Для этого детей с физическими недостатками придется убивать. И это далеко не самые глубокие изменения в укладе жизни. И, наконец, свой ответ предложили Афины. Ставка на торговлю, на создание и доставку вещей, нужных другим народам. Ответ Афин оказался в той ситуации наиболее удачным. Итак, судьбу цивилизации определяют ответы на вызовы истории. Сама История или всевышний экзаменуют цивилизации. У выдержавших экзамен появляется шанс пойти дальше.

Взгляд Арнольда Тойнби покоряет ясностью и глубиной. Его концепция прекрасно объясняет судьбы разных народов. Однако она не дает возможность что-либо предсказывать или хотя бы определять, брошен ли вызов, определяющий судьбу, или нет. Кроме того, образ "Матери-истории" (помните, у Владимира Маяковского:"Кто для матери-истории более ценен..."), так же как и Мирового духа, с гегелевских времен, утратил былую популярность.

Наверное, это одна из главных причин, по которой математики и представители естественных наук все чаще обращаются к проблемам истории. О некоторых идеях, родившихся на этом стыке дисциплин, мы и попробуем рассказать.


Что не позволено Юпитеру

Одному из авторов этой книги недавно довелось беседовать с ортодоксальным гуманитарием об использовании в истории методов точных наук. Принципиальную сложность такого "экспорта" идей и подходов из наук естественных в "неестественные" гуманитарий пояснил очень любопытным примером:

--- Вот вы, математики, любите всякие пространства, двух, трех, четырехмерные. А теперь представьте себе, что события развиваются в каждом измерении хотя бы двадцативосьмимерного пространства. И вы не знаете, какое из этих измерений определяет реальные исторические события, происходящие здесь и теперь. Разве вы можете это осмыслить и описать?

В этом рассуждении очень верно схвачено различие двух культур --- естественнонаучной и гуманитарной. Представителям этих наук разные вещи кажутся сложными и разные --- простыми. Они по-разному упрощают мир. И это прекрасно. Применяя оба подхода к одним и тем же событиям, проблемам, фактам, мы получаем как бы стереоскопическое, объемное изображение, видим глубину и объемность мира вместо скучной плоскости.

В первой главе уже не раз шла речь о нелинейной динамике, нелинейной науке. Говорят, что Гегель когда-то бросил фразу, что математика --- наука точная, потому что она наука тощая. Математика тех лет давала прекрасные возможности очень много сказать о простых объектах. Нелинейная наука --- это одна из попыток выйти из этого круга и понять не только сложные свойства простых систем, но и простые свойства сложных.

Представители нелинейной науки не особенно любят признаваться, что многие идеи и проблемы этой области пришли из других дисциплин. В некоторых науках есть "сверхзадачи", размышления над которыми позволили создать новые разделы математики и нелинейной науки. Например, одной из сверхзадач биологии является проблема морфогенеза. Это попытка понять, как в ходе развития организма клетки с одинаковой генетической информацией "узнают", суждено им стать клетками мозга или желудка. Попытка понять этот феномен привела Джона фон Неймана к теории самовоспроизводящихся автоматов [14], Алана Тьюринга --- к новому поколению математических моделей [15, 16], Рене Том, строя модели морфогенеза, попутно создал прекрасную и чарующую теорию катастроф [8, 17]. И это только вершины. Вся горная цепь намного больше. Сейчас многие "нелинейщики" приходят к выводу, что в XXI в. поставщиком таких сверхзадач станут науки о человеке --- психология, политология, социология и прежде всего история.

Одна из ключевых идей нелинейной науки, выдвинутая в начале века Анри Пуанкаре, по существу, пришла из истории. Что делает гуманитарий, когда пытается понять какое-то явление в истории? Он смотрит, что этим событиям предшествовало и к чему они привели. Он интересуется, что было аналогичного в других странах в другие эпохи. При этом особое внимание уделяется переломным эпохам и возникновению новых качеств. Это и называется "историческим подходом". Но именно так сейчас поступают в одном из разделов нелинейной науки --- теории ветвления или бифуркаций (от французского la bifurcation --- раздвоение).

Суть бифуркации лучше всего иллюстрирует витязь на распутье, который стоит перед камнем с надписью "Направо пойти --- женатому быть, налево пойти --- коня потерять, прямо пойти --- буйну голову сложить" (правда, чью голову сложить, обычно не поясняется). В каком-то месте пути попадается развилка, где нужно принимать решения. Около развилки пути еще очень близки, но дальше они ведут витязя к совершенно разным приключениям.

Или можно представить себе балку прямоугольного сечения, на которую положен груз, в точности как показано на рис. 1. Кладем сверху гирьки, увеличиваем груз, балка сжимается и остается прямолинейной. Но, начиная с некоторого критического веса, она уже не может оставаться в этом положении и прогибается вправо или влево. Ей приходится "выбирать", куда прогнуться под действием случайных факторов.



Рис. 1. Простейший пример бифуркации --- прогиб балки. При значении параметра большем l0 балка уже не может оставаться прямой. Ей приходится "выбирать" под действием случайных факторов --- прогнуться вправо или влево. Напомним, что сплошным линиям соответствуют устойчивые состояния, пунктирным --- неустойчивые.

Если нарисовать зависимость максимального прогиба балки от массы груза, то получается так, как показано на рис.1. Нелинейщики называют такие картинки очень красивым словом --- " бифуркационные диаграммы". О них мы уже упоминали в первой главе.

Представим себе какую-нибудь систему (физическую, химическую или биологическую), зависящую от параметра. Мы "крутим ручку" под названием параметр, и состояние системы немного меняется. Немного крутим --- немного меняется. Но иногда число возможных состояний системы, соответствующих одному положению ручки, может меняться, а иногда прошлое состояние системы может не слегка измениться, а исчезнуть, и система оказывается вынуждена совершить катастрофический скачок. Эти значения параметра называются точками ветвления или точками бифуркации. Такое поведение отвечает за множество явлений природы --- от радуги в небе до опрокидывания буровых платформ на морском шельфе, от гигантских нашествий саранчи до потери управляемости летательных аппаратов.

В сущности, мы все время упрощаем, наклеиваем ярлыки на самые разные явления. Он --- Король, она --- Королева, и есть лучший королевский стрелок. Любовный треугольник. И у Вас в голове уже сложилась целая повесть или роман. Вы уже представили себе несколько типичных модельных ситуаций. Некоторые литературоведы утверждают, что существует не более двух десятков разных сюжетов, передаваемых из поколения в поколение, независимо от стран, времен, эпох. Или макроэкономика, на основе которой принимают решения политики. Это тоже огромное упрощение. Чтобы описывать развитие гигантской страны с помощью 4-5 переменных (или даже 100), нужна большая интеллектуальная смелость и глубокое понимание существа дела. Мы упрощаем и в своей жизни, выделяя главное, отбрасывая второстепенное, строя свою судьбу.

Замечательным результатом науки нашего века стало понимание того, что различных типов бифуркаций очень немного. Сложные системы, как это ни удивительно, очень часто претерпевают те же самые скачки, бифуркации, метаморфозы, что и простые. Оказалось, что движение жидкости в причудливом турбулентном потоке, "коллективные усилия" излучающих атомов, создающих лазерный луч, и изменения популяции насекомых определяются, по существу, одинаковыми законами. Их поведение похоже на оркестр, в котором, казалось бы, каждый участник мог бы вести свою партию, считая себя солистом, или доказывать свой суверенитет коллегам, но который прекрасно управляется дирижером. Конечно, дирижер ограничивает возможности каждого из оркестрантов. Зато у целого появляется совершенно новое качество --- способность вести себя согласованно, просто, гармонично. Одна из удивительных вещей состоит в том, что во всех этих системах "дирижера" никто не назначает. Он возникает в ходе самоорганизации, отбирающей из океана возможностей ничтожную толику и упорядочивающей поведение системы.

Это громадное упрощение, которым блестяще владеет Природа. Не только из 28-мерного пространства, но и из пространства с бесконечным числом измерений, самоорганизация рождает сравнительно небольшой набор довольно простых сущностей.

Но, может быть, и нам стоит поучиться искусству упрощать у Природы и поступать так же в истории, выбирая из огромного множества переменных самые существенные?


Как меняется цвет времени

Меня, как реку,
Суровая эпоха повернула.
Мне подменили жизнь.
В другое русло,
Мимо другого потекла она,
И я своих не знаю берегов.

А.Ахматова

Возьмем какую-нибудь простенькую бифуркационную диаграмму. Например, такую, как на рис.2. С ней бы мы столкнулись, если бы балка, о которой в самом начале шла речь, оказалась немного скошенной на один бок. В ней при критической нагрузке, отмеченной на рисунке, можно небольшим воздействием перевести систему с одной ветви на другую.

А теперь вспомним классический трактат по политологии, написанный в начале XVI в. Никколо Макиавелли.

В главе 8 книги "Государь" в качестве стандартной он рассматривает следующую ситуацию:<<Сицилиец Агафокл стал царем Сиракуз, хотя вышел не только из простого, но и из презренного звания". Вступив в войско, он выслужился до претора Сиракуз. "Утвердясь в этой должности, он задумал сделаться властителем Сиракуз и таким образом присвоить себе то, что было вверено ему по доброй воле ... Он созвал однажды утром народ и сенат Сиракуз, якобы для решения дел, касающихся республики, а когда все собрались, то солдаты его по условленному знаку перебили всех сенаторов и богатейших людей из народа. После такой расправы Агафокл стал властвовать, не встречая ни малейшего сопротивления со стороны граждан>>.



Рис. 2. Бифуркационная диаграмма, которая вполне подходит к истории, описанной Н.Макиавелли.

Такой способ действий можно назвать "стратегией свершившихся фактов". Система быстро переводится с одной ветви бифуркационной диаграммы на другую, как на рис.2. В качестве бифуркационного параметра на этом рисунке можно выбрать временную переменную, характеризующую медленные изменения. В качестве характеристики состояния системы (аналог прогиба балки) рассматривать, например, степень социальной защищенности населения. Описанная модель прекрасно подходит для тех ситуаций, когда общество действует, по существу, как один человек, когда кто-то может сказать, что "государство, группа, организация --- это я". Такие ситуации многократно возникали в те периоды, когда история государств была историей королей.

Попробуем нарисовать бифуркационную диаграмму для того периода греческой истории, о котором шла речь в начале главы (см. рис.3). В качестве бифуркационного параметра l снова выступает "медленное время", в качестве зависимой переменной --- доход на душу населения. Начальный участок кривой соответствует устойчивому развитию, в точке l1 приходится решать, предпочесть ли сравнительно безопасную колонизацию заморских земель или выдвинуть лозунг "копья вместо оливкового масла". В точке l2 появляется новая возможность --- заняться торговлей, ремеслами и морским извозом либо остаться в рамках сложившихся традиций.



Рис. 3. "Бифуркационная интерпретация" определенного периода греческой истории. Нижняя ветвь, выходящая из точки (l1, A1) вниз, соответствует нетрадиционному ответу Спарты на ухудшение снабжения продовольствием. Ветвь, выходящая из точки (l1, A2) вверх, соответствует ответу Афин. Остальные ветви характеризуют стандартные ответы городов-государств.

При таком подходе "вызовы истории" возникают именно тогда, когда система проходит точку бифуркации. Выбор, о котором пишет А.Тойнби, является ничем иным как способом пройти такую точку. Именно в точке бифуркации есть место для великих. Для тех, кто начинает, закладывает основы, выбирает новые пути, а не для тех, кто развивает, совершенствует, продолжает. Именно в точках бифуркации есть социальный заказ на выдающихся деятелей. Вдали от этих точек многое объективно предопределено и действия одного или нескольких лиц не могут кардинально изменить ситуацию.

Вот как близкая мысль формулируется американским историком Майклом Шермером:<<изменения в последовательности исторических событий от упорядоченных к хаотическим редки, внезапны, приводят к относительной нестабильности и обычно происходят в точках, где ранее упрочившиеся "необходимости" приходят в столкновение с другими, так что "случайность" получает шанс изменить направление событий>>.

Но, как обычно и бывает, поэты понимали все раньше ученых. В сущности, у Владимира Маяковского есть примеры обеих ситуаций. Вдали от точки бифуркации усилия одной личности не меняют хода дел.

"Единица --- вздор,
единица --- ноль,
один ---
даже если очень важный ---
не подымет простое пятивершковое бревно,
тем более дом пятиэтажный."

Но в точке бифуркации, где находилось искусство в начале века, все совсем наоборот:

"Это
сегодня
стихи и оды,
в аплодисментах ревомые до ревмя,
войдут в историю
как накладные расходы
на сделанное
нами ---
двумя или тремя."

Итак, поведение системы может существенно усложняться вблизи точки бифуркации. Физики, занимающиеся теорией фазовых переходов, и нелинейщики, анализирующие сложные системы, прекрасно знают об этом. Но разве не то же самое мы видим и в истории? В качестве примера возьмем российскую историю, Смутное время, начало XVII века. Обратимся к трактовке этих событий В.О.Ключевским.

"Это было тягостное, исполненное тупого недоумения настроение общества, какое создано было неприкрытыми безобразиями опричнины и темными годуновскими интригами ... Смута была вызвана явлением случайным --- пресечением династии ... У нас в конце XVI века такое событие повело к борьбе политической и социальной, сначала к политической --- за образ правления, потом к социальной --- к усобице общественных классов. Столкновение политических идей сопровождалось борьбой экономических состояний. Силы, стоявшие за царями, которые так часто сменялись, и за претендентами, которые боролись за царство, были различные слои московского общества ... Смута началась аристократическими происками большого боярства, восставшего против неограниченной власти новых царей. Продолжали ее политические стремления гвардейского дворянства, вооружившегося против олигархических замыслов первостатейной знати, во имя офицерской политической свободы. За столичными дворянами поднялось рядовое провинциальное дворянство, пожелавшее быть властителем страны; оно увлекло за собою неслужилые земские классы, поднявшиеся против святого государственного порядка, во имя анархии. Каждому из этих моментов смуты сопутствовало вмешательство казацких и польских шаек, донских, днепровских и вислинских отбросов московского и польского государственного общества, обрадовавшихся легкости грабежа в замутившейся стране ...

Крушение политической системы означало распад традиционных связей между классами и многими людьми в каждом классе. Восстановление структуры возможно только на другой основе ... По-видимому, не оставалось никакой политической связи, никакого политического интереса, во имя которого можно было бы представить распадение общества. Но общество не распалось: распался лишь государственный порядок. Когда надломились политические скрепы общественного порядка, оставались еще связи национальные и религиозные: они и спасли общество. Казацкие и польские отряды, медленно, но постоянно вразумляя разоряемое ими население, заставили, наконец, враждующие классы общества соединиться не во имя какого-либо государственного порядка, а во имя национальной, религиозной и простой гражданской безопасности."
Альтернативная история

Тут-то гениальный Цереброн, атаковав проблему методами точных наук, установил, что имеется три типа драконов: нулевые, мнимые и отрицательные. Все они, как было сказано, не существуют, однако каждый тип --- на свой особый манер. Мнимые и нулевые драконы, называемые на профессиональном языке мнимоконами и нульконами, не существуют значительно менее интересным способом, чем отрицательные.

С.Лем

Представители точных наук научились всерьез относиться к своим моделям, уравнениям, расчетам. Только это позволяет осознать проблемы и пойти дальше. Вот как, например, выдающийся физик нашего времени Ричард Фейнман пишет об основном уравнении квантовой механики: "Сегодня мы не можем сказать с уверенностью, содержит ли уравнение Шредингера и лягушек, и композиторов, и даже мораль, или там ничего похожего и быть не может. Мы не можем сказать, требуется ли что-либо сверх уравнения, вроде каких-то богов, или нет. Поэтому каждый из нас может иметь на этот счет свое особое мнение".

Давайте, следуя традиции, всерьез задумаемся о следствиях, вытекающих из обсуждаемого подхода. На наших картинках были пунктиpные и сплошные линии. Сплошные соответствовали устойчивым состояниям системы, тому, что было или могло быть. Пунктиpные --- неустойчивым, нереализуемым состояниям общества, которые могут быть разрушены малейшим возмущением, но которые могут существовать тем не менее в наших мечтах и теориях. Это фантомы, призраки, которые живут в общественном сознании. Это то, о чем говорил Юнг, размышляя о "коллективном бессознательном", это то, что гуманитарии должны представлять намного лучше нелинейщиков и прочих естественников. Зато нелинейщики прекpасно знают, что неустойчивые ветви --- вещь очень важная. Они могут коренным образом менять ход устойчивых. Устойчивая и неустойчивая ветвь бифуркационной диаграммы могут столкнуться и аннигилировать. Тогда в системе может произойти катастрофический скачок или революционное изменение.



Рис. 4. Столкновение "фантома" с траекторией устойчивого развития Обормотии, после которого происходят катастрофические изменения.

А теперь посмотрим на бифуркационную диаграмму на рис.4. Она показывает, как шли дела в тридевятом царстве, в тридесятом государстве, в благословенной Обормотии. По горизонтальной оси будем откладывать время, по вертикальной --- доход на душу обормота. Жили-были обормоты, горя не знали, до времени l1. Тут и пришло время думу думать, создавать ли свою обормотную промышленность или оставаться аграрно-сырьевым придатком соседей. Решили создавать и двинулись к индустриальному будущему по верхней ветви. Но тут накрыл их вал технического прогресса, аккурат в точке l2, и снова решать пришлось, то ли сковородки с экскаваторами производить, то ли компьютеры с видеомагнитофонами да интеллект искусственный. И решили они, что интеллекта у них и своего хватит, а вот сковородки --- дело стоящее. И тут мечты у них в моду вошли и фантазии, о чем в точности --- сказать не можем, однако письменность у них вскоре исчезла. Но оказалось, что и со сковородками дела все хуже и хуже, и пошли разговоры про возврат к славным старым временам, к общеобормотным ценностям. Так, незаметно настало l3, и тут вообще обормоты перестали понимать, что же с ними творится. А когда дым рассеялся (в прямом и переносном смысле), оказалось, что вот он, сырьевой придаток, уже налицо, а соседи обсуждают, жить учат да гуманитарную помощь оказывают.

А ведь небезынтересно предсказывать точки l1, l2, l3?

И все же нелинейная наука и вычислительный эксперимент позволяют "играть" вариации на исторические темы на совсем других инструментах. Это напоминает рожденную воображением Германа Гессе игру в бисер со всеми смыслами и ценностями человеческой культуры, с параллельным синтезом методов и стилей мышления естественных и гуманитарных наук.

Если проекты такого сорта окажутся успешными, то это может означать создание новых междисциплинарных подходов. Как знать, быть может, студентам следующего поколения придется сдавать не только "математическую физику" или "математическую психологию", как их сегодняшним собратьям. Может быть, им придется готовить шпаргалки по "математической истории"?

Нельзя исключить, что будет создано эффективное средство, позволяющее получать серьезный, достоверный прогноз будущих опасностей. Психологи утверждают, что важнейшим понятием в этой науке является понятие об опережающем отражении реальности. Не станут ли такие модели инструментом исследователя, политика, озабоченного будущим?

Наконец, знания о том, какую точку бифуркации нам предстоит пройти, на какие ветви мы можем попасть, и каков "коридор возможностей", могут оказаться полезными всем людям, которым небезразлично будущее. Если бы такие проекты позволили хотя бы несколько уменьшить влияние одного из самых опасных мифов массового сознания по имени "Иного не дано", то и это было бы исключительно важно. Ведь будет не очень славно поставить витязю на перепутье единственную стрелку "К светлому будущему" ("процветающей экономике" и т.п.), а на остальных путях поставить знак "проезд воспрещен" или аккуратно замаскировать их кустиками. Быть может, нам всем пришла пора учиться искусству выбирать или хотя бы осознавать, что выбор есть.

И все же оставим место сомнениям. Вот, пожалуй, один из самых сильных аргументов коллег, с которыми мы обсуждали идею альтернативной истории :

--- А не слишком ли много бифуркаций в истории, да и в жизни каждого человека? Великие империи, процветающие государства рушились на глазах одного поколения, не сумевшего принять вызов. Ведь если бифуркационная диаграмма почти вся состоит из точек бифуркации, то привлекательность обсуждаемого подхода сильно уменьшается. Или так не бывает?

--- На наш взгляд, бывает, хотя и не часто. События это редкие, но исключительно важные. И методы для их описания нужны совершенно другие, похожие на те, что применяют при анализе аварий, катастроф и стихийных бедствий. Но это --- предмет отдельного pазговора.



Глава 2.

Возможна ли теоретическая история?

1.1 Сослагательное наклонение
1.2 Нелинейная динамика --- ключ к теоретической истории?
1.3 "Историческая механика" и синергетика


1.2 Нелинейная динамика --- ключ к теоретической истории?

Но история --- не ремесло часовщика или краснодеревщика. Она --- стремление к лучшему пониманию, следовательно --- нечто, пребывающее в движении. Ограничиться описанием нынешнего состояния науки --- это в какой-то мере подвести ее. Важнее рассказать о том, какой она надеется стать в дальнейшем своем развитии.

М.Блок."Апология истории"

В этом разделе представлена попытка взглянуть на историческую науку "со стороны". С точки зрения людей, которые осознают, что существует огромная сокровищница знаний, методов, идей, проблем древнейшей науки --- истории, размышляют и пытаются понять, как что-то из этого можно использовать при решении их конкретных теоретических и практических задач. Это взгляд естественников, которым пришлось применять методы математического моделирования и компьютерного анализа в различных дисциплинах. Здесь ни в коей мере не хотелось бы обсуждать, как можно "помочь историкам", а, напротив, важно было бы опереться на их помощь и поддержку в реализации некоторой исследовательской программы, контуры которой здесь намечены. Естественно, без активного заинтересованного участия профессионалов-историков исследования в предлагаемом направлении обречены на неудачу.

Более того, может оказаться, что при нынешнем уровне развития математического моделирования, экономики, социологии, психологии, да и самой истории, сформулированные проблемы неразрешимы. Прекрасный пример плодотворности анализа неразрешимых проблем --- исследования классических задач об удвоении куба, трисекции угла и квадратуре круга, сыгравшие огромную роль в становлении геометрии.

"Сверхзадачи" из биологии стали мощным стимулом к развитию новых подходов к моделированию в конце XX в. [30, 35, 36, 38, 45]. Можно предположить, что "поставщиками" таких сверхзадач в следующем столетии станут психология и история. Во-первых, потому, что от глубины понимания в этих двух областях непосредственно зависит, насколько достоверным и разумным будет прогноз развития человечества. Этот прогноз влияет на изменение стратегии развития нашей цивилизации, на то, какие перемены человечество может и должно принять, и, конечно, на множество конкретных принимаемых решений. Во-вторых, в этих областях мы имеем дело со сложными, необратимо развивающимися, часто уникальными системами. Такие системы бросают вызов традиционной методологии, принятой в естествознании, и требуют глубокого осмысления, использования опыта анализа, которым располагают гуманитарные дисциплины. В-третьих, процессы, исследуемые историей и психологией, обладают обманчивой "прозрачностью", потому что мы сами являемся частью исследуемой системы, и это приводит к необходимости использовать своеобразный подход, позволяющий не доверять "очевидным" вещам.


Для чего нужна теория?

Итак, спросим себя, для чего нужна теория, либо какая-то теоретическая наука. Конечно, сразу перед глазами встает величественное здание теоретической физики. Иерархия моделей, развитый формализм, эффективный набор процедур, позволяющий сравнивать предсказания теории с результатами эксперимента и данными наблюдений. Однако и в других областях предпринимались попытки построить теоретический анализ, пусть гораздо более скромный. Характерный пример --- дискуссия о теоретической биологии и попытки построить эффективную систему математических моделей для анализа биологических проблем. Дискуссии, школы в городе Пущино, огромное количество статей и конференций, множество неудачных моделей. И каков же итог? На наш взгляд --- новый уровень понимания биологических проблем, возможность отделить действительно принципиальные вопросы от мелких второстепенных задач. Разумеется, при этом математика перестает быть "машиной", обрабатывающей результаты экспериментов. У нее появляется в одних случаях эвристическая функция, в других --- обобщающая, синтезирующая роль, в третьих она становится языком, на котором формулируются биологические закономерности. Опрос, проведенный на одной из школ по математическим моделям биологии, показал, что некотоpые участники на вопрос, что мешает совместной работе математиков и биологов, ответили:"Математикам --- незнание математики, биологам --- незнание биологии". Вероятно, это типичная ситуация.

Недавний пример --- попытки построения теоретической географии, опираясь на те количественные закономерности, которые были обнаружены в этой области [46-48].

Допустим, что мы решили, следуя примеру других наук, создать новую дисциплину --- теоретическую историю. Какие шаги для этого можно было бы предпринять?

Уточнение предмета. В философии истории существует множество взаимоисключающих взглядов на предмет исторической науки [8, 10, 12, 25, 57]. Если считать, что история это "наука о мнениях", или полагать, что она "учит только тому, что ничему не учит", то трудно надеяться на успех в построении какой-либо теории. Давайте, следуя традиции естественников, введем "рабочее определение". Оно нужно только для того, чтобы договориться, о чем будет идти речь. Например, оно может звучать так:"Под теоретической историей будем понимать междисциплинарный подход, позволяющий исследовать и описывать причинно-следственные связи, определяющие поведение и поле путей развития больших социальных групп на характерных временах от 10 до 1000 лет и обладающие предсказательной силой". Определение, вообще говоря, требует уточнения из-за "больших социальных групп", под которыми могут пониматься в одних случаях этносы, в других --- граждане страны или полиса, в третьих --- элиты, определяющие ход исторических процессов. "Предсказательная сила" это способность давать прогноз определенных событий на некоторых характерных временах. Разумеется, эти времена определяются типом событий, полнотой и достоверностью информации о состоянии общества. Нелинейная динамика показала, что существуют даже в простейших физических системах фундаментальные ограничения на возможность "динамического" прогноза, своеобразный "горизонт предсказуемости" [39, 81]. Тем не менее множество характеристик исследуемых процессов могут быть предсказаны, и почти всегда можно дать "слабый прогноз" --- ответить на вопрос, чего не произойдет в данной системе.

Междисциплинарность подхода связана с необходимостью использовать модели социальной психологии, экономики, результаты имитационного моделирования для получения ответов на исторические вопросы. Теоретическая история, как это не раз бывало, ставит историю в центр наук. Однако сейчас это, по-видимому, можно сделать на совершенно ином уровне.

Пожалуй, наиболее важным является представление о "поле путей развития". В самом деле, в ходе развития, начиная от отдельного человека и кончая человечеством как целым, неоднократно приходится делать выбор. Отказываться от одних путей, предпочитая другие. Смысл и значение различных научных дисциплин в большой мере определяются тем, насколько разумным и осознанным они позволяют сделать этот выбор. Возможности истории в комплексе с другими дисциплинами, включая компьютерное моделирование, в последние годы многократно возросли. Традиционная история делала акцент на одном конкретном историческом пути. Теоретическая история может поставить во главу угла не только реальность, но и возможности, ситуации выбора, точки бифуркации исторического процесса. Теоретическая история должна иметь дело не только с критическим анализом прошедшего, но и с "сослагательным наклонением".

Отметим, что путь к созданию и исследованию "виртуальной реальности", позволяющей лучше понять существующую и "спроектировать" будущую, проходят и другие дисциплины. Например, теоретическая география [46-48], психология [23, 49, 50], конструирожный этап, предшествующий построению теории. Напомним, что в физике он проходился в течение многих веков. Леонардо да Винчи, как известно, исследовал зависимость величины, которую мы называем ускорением свободного падения, от массы и плотности тела. Он считал эти факторы весьма важными и получил конкретные количественные соотношения. Известная "школьная легенда" гласит, что вопрос удалось прояснить благодаря опытам Галилея, бросавшего предметы с вершины Пизанской башни. Однако это неверно. Вычислительный, не говоря уже о натурном, эксперимент приводит к выводу, что Галилей просто не мог наблюдать одновременное падение различных тел. Проведенный исторический анализ также подтвердил, что мы имеем дело только с легендой. (Такая работа была с успехом выполнена группой школьников из вечерней компьютерной школы при Институте прикладной математики Академии наук.) Позже, в картезианской физике, движение тел связывалось со сложным взаимодействием вихрей и высказывалась идея, что "все связано со всем" [26]. Понадобились усилия многих блестящих исследователей, чтобы перейти к более простому описанию, выделить наиболее важные причинно-следственные связи, чтобы создать "сито".

Вероятно, история сейчас переживает "картезианский период" своего развития. Однако вопрос об иерархии причинно-следственных связей уже поставлен. Известен классический пример М.Блока с падением человека в пропасть в результате неосторожного шага. Тривиальному подходу "существенно все" противопоставлен поиск конкретной причины --- неосторожного шага:"И не в том дело, что именно этот антецедент был самым необходимым для данного события. Множество других были в равной степени необходимыми. Но среди всех других он выделяется несколькими очень четкими чертами: он был последним, наименее постоянным, наиболее исключительным в общем ходе вещей, наконец, в силу именно этой наименьшей всеобщности его вмешательства как будто легче всего было избежать" [25].

М.Блок и ряд его последователей предложили критический подход к доступным источникам, что тем самым превращает работу историка в своеобразное "историческое расследование". При этом традиционные приемы криминалистики и использование стандартов анализа, принятых в юридических науках, помогли получить много интересных научных результатов в этом жанре "исторического детектива". Выделение стандартных схем рассуждений и типичных модельных ситуаций позволило С.Смирнову создать жанр своеобразных "исторических шахмат" [27], обсуждаемых в нескольких задачниках по истории. Нахождение достаточно простых и красивых схем, позволяющих анализировать происходящее на различных исторических подмостках, в парадоксальной "олимпиадной" форме, выходит за рамки учебных упражнений. Это сродни рефлексии математиков и представителей естественных наук, часто приводящей к парадоксам и "красивым" задачам.

Историческая информатика в том традиционном смысле, как это, например, понимается в сборнике [28] или книге [76], расширяет возможности историка, давая инструменты для анализа фактического материала, привлечения современного статистического анализа. Однако это не означает нового качества, компьютер, по-прежнему, остается "машиной для обработки данных". Глубокое и оригинальное обсуждение методов моделирования в анализе исторических процессов показывает, что мы здесь находимся в начале пути [31-33, 75, 76]. Теоретическая история могла бы сделать следующий шаг --- развить технику вычислительного эксперимента в истории. В физике, химии, технологии, где это делалось в 60-е годы, использование этой техники имело фундаментальное значение. В частности, в России начало этих работ было связано с научными школами академиков А.Н.Тихонова, А.А.Самарского и Н.Н.Моисеева.

Построение набора моделей. Огромный набор моделей, построенных на вербальном уровне, уже существует. Гегель, Маркс, Тойнби, Гумилев представляют историческое развитие достаточно ясным, логичным и самосогласованным образом. Каждая из этих концепций, по-видимому, допускает достаточно простое формализованное математическое описание. И основная проблема, веpоятно, состоит не в том, чтобы подобрать адекватный математический язык. Серьёзная междисциплинарная работа нужна, чтобы понять, что и в каких случаях применимо, какие упрощения разумны и оправданы.

Другую принципиальную проблему можно проиллюстрировать на примере использования аппарата теории катастроф в социологии, психологии, других сферах "мягкого моделирования". Предположение о том, что мы имеем дело с "типичными" катастрофами складки или сборки неконструктивно, если у нас нет процедуры измерения величин, "отложенных по осям". Нетрудно убедиться, что число моделей, для которых он решается или просто ставится, ничтожно (см., например, библиографию в книге [30]).

В свое время Л.Н.Гумилевым [8] была введена и блестяще использована для исторического анализа концепция пассионарности. Эта концепция представляется глубокой и содержательной, однако ее использование в математическом моделировании требует ответа на вопрос, каким образом пассионарность, хотя бы в принципе, может быть измерена. Получение этого ответа и требует совместной работы историков, психологов, социологов, специалистов по моделированию.

Система верификации и методика установления соответствия. Этот вопрос требует отдельного анализа и обсуждения и, вероятно, является одним из самых "больных" для специалистов, использующих математические методы в исторических исследованиях. Традиционные возражения "классических" историков сводятся к следующему:"Вы получили в точности то, что заложили и что мы и без того знали". Либо:"Модель никуда не годится, потому что мы этого не знали и получилась нелепость". За этим очевидным логическим тупиком (новое знание не может идеально соответствовать старому, потому что иначе оно не является новым) на самом деле стоит глубокая проблема. Это проблема критерия истины в таких исследованиях. На основе чего то или иное историко-математическое построение может быть принято или отвергнуто?

Успехи неклассической, а позже "постнеклассической" науки, во многом связаны с наличием весьма жестких рамок, в которые должны укладываться предсказания всех вновь создаваемых физических теорий. Именно благодаря этим рамкам и удалось поставить "решающие эксперименты". Напротив, психоанализ и множество медицинских теорий обычно сталкиваются с упреками в том, что они все объясняют, но ничего не предсказывают, "не могут быть фальсифицированы" и т.д. По-видимому, эти методологические вопросы, тесно связанные с нашими сегодняшними возможностями и результатами конкретных исследований, могут быть успешно решены. Их решение, вероятно, также является важным шагом при построении теоретической истории.


Когда теоретическая история будет создана...

Проблемы жгучи, ставки впечатляющи. Мы живем в поистине интересные времена, и это вполне объяснимо: мы живем в век величайший бифуркации за всю историю человечества.

Эрвин Ласло

Допустим, что исследовательская программа, связанная с построением теоретической истории, реализована. Что это дает? Варианты ответов на этот вопрос могут, например, быть следующими.

Это приведет к аппарату для задавания вопросов. Давайте представим себе, что мы стали участниками межпланетной экспедиции на некую обитаемую, но неизвестную нам планету. Народ на той планете имеет долгую и славную историю. В экспедицию, соответственно, включены физики, химики, биологи и, разумеется, историк. Физики и химики привезут на планету не только приборы, но и конкретные исследовательские программы, "аппарат генерации вопросов". С чем прибудет историк? Какие вопросы следует задать немедленно, а с какими можно подождать лет десять? Другими словами, как отделить суть дела от несущественных деталей? Разумеется, этот мысленный эксперимент --- лишь способ обострить проблемы, возникающие при стратегическом планировании в наших конкретных земных условиях.

Теоретическая история может оказаться полезной в сфере долгосрочного планирования. Одному государственному деятелю приписывают следующую крылатую фразу:"Я могу найти множество специалистов, которые берутся построить пирамиду, и не могу найти ни одного, кто знал бы, следует ли ее строить". Эта фраза отражает те суровые реальности, которые сложились к концу нашего века. Еще не так давно в рамках кдарственному деятелю приписывают следующую крылатую фразу:"Я могу найти множество специалистов, которые берутся построить пирамиду, и не могу найти ни одного, кто знал бы, следует ли ее строить". Эта фраза отражает те суровые реальности, которые сложились к концу нашего века. Еще не так давно в рамках как рыночной, так и плановой экономики, правительства, как правило, планировали развитие своих государств в пятилетней перспективе. Исчерпание многих важнейших ресурсов, ухудшение экологической ситуации, быстрый рост населения стран третьего мира, изменение политической карты мира и передел сфер влияния, тупик концепции "устойчивого развития" создают новую ситуацию. Приходится принимать в полном смысле слова исторические решения, которые могут изменить траекторию развития цивилизации, по крайней мере, на много десятков лет.

Среди множества проблем, которые здесь возникают, обратим внимание только на одну. Это так называемый "парадокс планировщика". То, что прекрасно на временах 5-7 лет, может оказаться далеко не лучшим решением на временах порядка 10-20 лет и гибельным на временах 40-60 лет. Как тут быть? Считать, следуя Ф.Хайеку, что следующие поколения сами позаботятся о себе, и нас их проблемы волновать не должны? Или действовать как-то иначе?

Теоретическая история, вооруженная опытом изучения стран и цивилизаций в кризисные переломные моменты, современными средствами теоретического исследования и методами анализа наблюдений, идущими от естественных наук и математики, могла бы сыграть здесь огромную роль.

Как "научиться хотеть"? Культура, религия, идеология, научные теории в огромной степени определяются не только текущим состоянием общества, но и его ожиданиями, долгосрочным прогнозом. В одних случаях они могут играть стимулирующую, а в других разрушительную роль. Есть все основания полагать, что история готовит нашей цивилизации много неприятных неожиданностей. Уже происходит достаточно быстрый отход от предшествующей траектории развития человечества. Анализ возможных ответов на этот вызов является сверхзадачей всей науки. Естественные науки сами по себе решать такие проблемы не могут. Масштабы ожидаемых перемен слишком велики, и очень многое должно измениться в самом человеке. Тут свое слово должны сказать междисциплинарные подходы и, может быть, теоретическая история.


Общие трудности, общие проблемы

"Мы с вами одной крови, вы и я", --- сказал Маугли, произнося по-медвежьи те слова, которые обычно говорит весь Охотничий Народ.

Р.Киплинг

Еще не так давно на математику смотрели как на королеву наук, дающую образцы логики, строгости, дедуктивного мышления другим дисциплинам. Иммануил Кант формулировал свои философские утверждения в виде теорем. В самом деле, вспомним образцы, данные Евклидом. Минимальное количество основных допущений, простота и наглядность используемых математических моделей, огромные возможности для дедукции и весьма высокие требования к строгости рассуждений. Очарование и изящество классических произведений, которые доныне вдохновляют тех, кто строит математические теории.

Однако современной математике и математическому моделированию в ХХ в. пришлось столкнуться с весьма непростыми ситуациями, пришлось во многих случаях перестать быть "образцом строгости". Наряду с аналитиками, которые делают "то, что можно, и так, как нужно", появился большой отряд специалистов по прикладной математике, которым приходится делать "то, что нужно, так, как можно", и широко использовать результаты компьютерного моделирования.

За это пришлось весьма дорого заплатить. Специалисты по математическому моделированию и нелинейной динамике столкнулись с теми же трудностями и проблемами, которые стоят перед дисциплинами, изучающими сверхсложные объекты. И, в частности, перед историей. Обратим внимание на некоторые из них.

Трудность выделения параметров порядка. Появление и широкое внедрение компьютеров породило иллюзию, что "чем больше учтем, тем лучше". (Это сродни мнению, бытующему среди некоторых исторических школ, что "все существенно".) При этом построение модели сложного явления часто сравнивали со складыванием мозаики. Провал нескольких крупных исследовательских проектов показал, что так действовать нельзя. Например, американский проект "Биосфера", связанный с моделированием экологических процессов, в котором участвовало около 700 ведущих специалистов, "складывающих мозаику", привел к результатам, не допускающим какой-либо разумной интерпретации.

Приходится тем или иным способом выделять главные, ведущие переменные, к которым подстраиваются все остальные степени свободы ("решать проблему агрегации" в другой терминологии). Уточнение математического описания обычно связано с построением иерархии математических моделей, что неоднократно обсуждалось [29, 34, 63, 64, 70]. Однако в моделировании, как, вероятно, и в истории, выделение параметров порядка остается скорее искусством, нежели наукой.

Появление проблемы измерения. Успехи в математическом моделировании сложных систем, как правило, связаны с анализом объективных количественных характеристик исследуемых объектов. Опыт развития математической психологии и математической географии показал, что это является далеко не простым делом [47, 49, 50]. Характерный пример дает анализ Чернобыльской аварии и ряда других катастроф. "Слабым звеном" во множестве случаев оказываются люди, а не техника. Именно их действия и реакцию следовало бы описывать и предсказывать как во множестве прикладных задач, так и в истории. Однако здесь количественное описание существенно отличается от стандартных приемов, используемых в естествознании. С помощью тестов, опросов, анализа других косвенных данных приходится часто извлекать объективную информацию о субъективных факторах. Эта проблема, присутствующая во многих математических моделях экономики, социологии, психологии, политологии и ряда других дисциплин, использующих результаты "мягкого моделирования", естественно встанет и при создании теоретической истории.

Акцент на качественном описании системы. В истории огромную роль играет выявление тенденций, возникновение новых качеств. Зачастую несущественными оказываются многие количественные характеристики исследуемых социумов. При этом качественные революционные скачки, "локомотивы истории", всегда служили предметом пристального внимания.

Но именно "анализ качеств", а не чисел и фигур, стал основным лейтмотивом множества разделов математики, родившихся в ХХ в. --- топологии, теории катастроф, некоторых теорий в нелинейной динамике. И здесь мы также видим общие проблемы.

"Информационный джинн". Во множестве ситуаций принято жаловаться на недостаток информации, необходимой для конкретного анализа, принятия ответственных решений и т.д. Однако и нелинейная динамика, и историческая наука зачастую сталкиваются с прямо противоположной ситуацией. Не ясно, что делать с уже собранной информацией, что следует выделить и уточнить, а что "забыть". Типичные примеры дают данные, поступающие со спутников, с сейсмических станций, метеорологические наблюдения. Огромные массивы информации в этих важных сферах очень часто не дают ни понимания исследуемых процессов, ни возможностей для их прогноза. Громадные объемы данных вообще никогда не анализировались. Другими словами, упорядочение информации, выделение в ней "параметров порядка", анализ вопросов, которые можно задать, располагая этой информацией, выходят на первый план во многих приложениях нелинейной динамики. Можно ожидать, что скоро на эти рубежи выйдет и история. Когда "клиометрия" или "количественная история", так иногда называют направление, связанное с компьютерной обработкой исторических источников, сделает свое дело, и вста-newpage noindent нет вопрос "что дальше?", свое слово должна сказать теоретическая история.

"Исторический подход" теории бифуркаций. Одним из основных инструментов современной нелинейной динамики является теория бифуркаций.

Чтобы придать конкретный смысл понятию "бифуркация", надо понять, чем "одно" отличается от "другого" (того, что возникло после). Для простых моделей эти отличия удается выделить, их анализ для многих сложных систем --- нерешенная проблема [52]. В чем-то обсуждение этих проблем "нелинейщиками" напоминает дискуссии историков об укладах, формациях, классах, "европейском" и "азиатском" пути развития. Наверное, оно похоже на поединок Геракла с Антеем, в котором последний утратил силу и мощь, оторвавшись от надежной почвы.

Характерный пример, демонстрирующий пользу "вымышленных параметров", перехода от одного класса объектов к более широкому классу систем, связан с анализом сценариев перехода от порядка к хаосу. Одним из наиболее интересных и сложных сценариев, обнаруженных к настоящему времени, является разрушение инвариантных торов. Принципиальной моделью в этой теории является отображение

yn+1 = a yn(1-yn-1). (1)

Компьютерное исследование этой модели позволило обнаружить много странных свойств этого объекта. Эти свойства удалось понять и объяснить, только рассмотрев более широкое семейство ---

xn+1=yn+bxn, yn+1=ayn(1-xn), (2)

и введя "вымышленный" параметр b. (Семейство отображений (2) переходит в семейство (1) при b=0.) Может быть, создание "виртуальных миров" окажется полезным и при анализе некоторых исторических проблем?

Большой интервал характерных масштабов. Имея дело с экологическими задачами, анализом межгосударственных отношений, проблемами стратегического планирования, специалисты по математическому моделированию столкнулись с тем, что существенные процессы занимают огромный интервал временных масштабов. Иерархия примерно такова:

--- катастрофы, стихийные бедствия, религиозные конфликты, использование вооруженных сил --- дни-недели;

--- решения политического руководства --- недели-месяцы;

--- изменение стереотипов массового сознания под влиянием средств массовой информации --- 1-3 года;

--- экономические реформы --- 3-5 лет;

--- изменение уровня образования, качества подготовки специалистов --- 5-10 лет;

--- технологические и технические нововведения --- 10-15 лет;

--- изменение соотношения сил различных государств, эволюция межгосударственных отношений --- 20-50 лет;

--- этногенез, рождение и развитие новых идеологий, мировых религий и т. д. --- сотни лет.

Ключевой задачей при моделировании сложных социально-эконо-ми-чес-ких систем становится выделение определенного интервала масштабов, на которых разворачиваются исследуемые процессы. При этом приходится прибегать к определенным допущениям относительно "медленных" и "быстрых" переменных.

Отсюда вытекает иерархия пространственных масштабов, масштабов взаимодействия различных социальных групп. Но это в точности те же проблемы, которые возникают при историческом анализе, и на которые обращает внимание А.Тойнби [8].


Что нового на чаше весов?

Резюмируя предыдущее, скажем, что известные раньше явления систематизируются все лучше и лучше. Но и новые явления требуют себе места...Тут целый мир, о существовании которого никто и не догадывался.

А.Пуанкаре

Исследователи очень часто полны радужных надежд и склонны составлять наполеоновские планы. Однако обычно существует противоречие между благими научными намерениями и средствами, имеющимися для их реализации. Поэтому приходится взвешивать. Класть на одну чашу весов ожидаемые результаты и усилия, которые можно вложить, на другую --- инструменты и подходы, которые существуют или могут быть развиты. Итак, что же нового на эту чашу весов сегодня может положить нелинейная динамика?

Вероятно, следовало бы обратить внимание на несколько результатов.

Алгоритмы выделения параметров порядка. Основой синергетики и нелинейной динамики является концепция параметров порядка [42]. Эта концепция за последние двадцать лет прошла большой путь от "символа веры", который разделяли в основном физики, до нового раздела математики --- теории инерциальных многообразий [51]. В этой теории для большого класса систем, имеющих бесконечно много степеней свободы, доказано существование конечного набора параметров порядка, определяющих поведение изучаемых объектов на больших характерных временах. Оказалось, что за фасадом исключительно сложных, хаотических явлений действительно скрывается внутренняя простота.

Однако, несмотря на большое значение этих принципиальных результатов, гораздо важнее было бы построение алгоритмов, позволяющих устанавливать взаимосвязи между этими параметрами. Например, нахождение связывающей их системы обыкновенных дифференциальных уравнений (инерциальной формы). Исследования в этом направлении интенсивно развиваются, и появились первые сообщения об обнадеживающих результатах.

Большие усилия в последние годы вкладывались в алгоритмы так называемой реконструкции аттракторов [18, 52]. Это новый класс методов обработки временных рядов, порождаемых детерминированными динамическими системами либо системами с малым шумом. Такие методы позволяют выяснить, насколько сложной должна быть модель изучаемого явления (сколько в ней должно быть степеней свободы или параметров порядка), насколько велик временной интервал, на котором можно прогнозировать поведение изучаемого объекта. Возможно, эти методы окажутся полезными при анализе социальных и исторических процессов. В ряде случаев они оказались очень эффективными в задачах медицинской и технической диагностики.

Изучение неустойчивых решений, определяющих будущее. Допустим, что важная часть проблемы решена, и параметры порядка выделены. Это не является столь уж невероятным, например, в макроэкономике эта задача иногда успешно решается. Кривые спроса и предложения, кривые производственных возможностей [15, 63, 64] связаны с разумным решением таких проблем на определенном уровне.

Допустим, что развита теория, показывающая, каким образом будут меняться эти величины в зависимости от времени (параметр t на рис.5). Говоря математическим языком, у нас появилась возможность построить бифуркационную диаграмму для исторических процессов, включая неустойчивые траектории.

Современная теория бифуркаций показывает, что эти "вещи в себе", которые также должны быть в центре внимания теоретической истории, подчас приобретают решающее значение. Неустойчивые и устойчивые ветви могут "схлопываться", "коллапсировать", что приводит к катастрофическим скачкам, к принципиальным изменениям в жизни общества, происходящим за очень короткий срок.

Перелистав страницы А.Дж.Тойнби или Л.Н.Гумилева, нетрудно найти много эпизодов не только из жизни полисов, где развитие шло в соответствии со сценарием, представленным на диаграмме (рис.2-5а). Диаграмма на рис.5б может соответствовать кризису "общества потребления", имеющего весьма высокие жизненные стандарты.

Однако, пожалуй, гораздо интереснее и важнее анализировать и предсказывать ситуации, представленные на рис.5в. Эта картина соответствует, например, разрушению окружающей среды при использовании традиционных технологий природопользования, резкому понижению жизненных стандартов и выходу с течением времени на уровень возобновляемых ресурсов. Две верхние изолированные ветви (устойчивая и неустойчивая) соответствуют, например, новой технологии природопользования. И здесь становится ясна большая польза диаграмм, подобных нарисованным. Допустим, что мы никоим образом не представляем кривой своего исторического развития. Тогда нас ожидают катастрофы, бедствия и серьезные неприятности в точках l3 и l4 (см. рис.5в).



Рис. 5. Типичные бифуркационные диаграммы, допускающие наглядную историческую интерпретацию.

Но, если мы имеем развитый и эффективный аппарат прогноза, то ситуация существенно меняется. Тут вполне уместна пословица "предупрежден, следовательно вооружен". Тут мы знаем "поворотный пункт" l*, где мобилизация ресурсов и усилий с целью перейти на верхнюю ветвь разумна и оправдана. Позже для этого попросту может не оказаться возможностей.

Здесь ситуация очень похожа на ту, которая сложилась у геофизиков, занимающихся прогнозом землетрясений: чем более обоснован и достоверен прогноз, тем более масштабные и энергичные меры можно предпринимать, чтобы уменьшить ущерб от стихийного бедствия [39].

Обратим внимание на попытку классификации и терминологию, введенную для бифуркаций в ходе исторического процесса [62]:<<Сами нестабильности могут быть различного происхождения. Они могут возникать вследствие недостаточной ассимиляции или плохого применения технологических инноваций. Такого рода нестабильности служат примерами того, что я называю "T-бифуркациями". Толчком к их возникновению могут быть и внешние факторы, такие как гонка вооружений, и внутренние факторы, такие как политические конфликты, образующие "C-бифуркации". Нестабильности могут быть вызваны крушением локального экономико-социального порядка под влиянием учащающихся кризисов, порождающих "E-бифуркации". Независимо от своего происхождения, нестабильности с высокой вероятностью распространяются на все секторы и сегменты общества и тем самым открывают двери быстрым и глубоким изменениям>>.

Изменение поля возможностей и эволюция областей притяжения аттракторов. Анализ развития системы высшего образования, в котором одному из авторов довелось принять участие [1, 2, 53], а также работа с моделями теории нейронных сетей, имитирующих элементы мышления [41, 54], помогла увидеть общую для многих задач нелинейной динамики проблему. Эта проблема может стать одной из ключевых при построении теоретической истории. Проблема связана с изменением областей притяжения аттракторов исследуемых систем.

В нелинейной динамике принципиальную роль играют притягивающие множества в фазовом пространстве. Формально они описывают поведение исследуемого объекта на больших временах. В теории нейронных сетей они соответствуют запомненным образам, которые следует распознать. В ряде междисциплинарных исследований аттракторам сопоставляются предельные состояния общества. Иногда их трактуют как "цели развития" [72, 73]. До середины восьмидесятых годов именно аттракторы и были в центре внимания специалистов по нелинейной динамике [18, 81].



Рис. 6. Метаморфоза области притяжения аттрактора A приводит к изменению "цели" исследуемой системы.

Однако сейчас акценты существенно меняются. На арену все чаще выходят множества в фазовом пространстве, называемые областями притяжения аттракторов. Пусть некоторое множество A (например, особая точка, как на рис.6) является аттрактором. Если начальная точка в фазовом пространстве, например, описывающая состояние общества, принадлежит его области притяжения, то траектория, начинающаяся в ней, с течением времени стремится к аттрактору A. Область G1 показывает, насколько существенен этот аттрактор, как много траекторий он "притягивает". Обычно рассматривают не одну модель (динамическую систему), а семейство моделей, зависящих от параметра (например, состояния окружающей среды или какой-нибудь другой "медленной переменной"). При этом не так давно было открыто интересное явление, --- метаморфозы областей притяжения аттрактора --- катастрофическое, скачкообразное изменение этой области при малом изменении параметра.

Приведем простой "околоисторический" пример, показывающий, что это может означать. Допустим, что при данном значении параметра наша траектория, выходящая из точки B, стремится к аттрактору A. Именно аттрактор A определял, как иногда говорят историки, тенденции развития. Будучи предметом рефлексии общества, эти тенденции порождали определенные религиозные верования, философские системы, научные теории. Но ситуация изменилась, область притяжения аттрактора A уменьшилась, и точка C, в которую мы пришли из точки B, с течением времени (см. рис.6б) уже не принадлежит, к нашему сожалению, области притяжения аттрактора A. Внешне, если иметь в виду ближайшую перспективу и локальную окрестность нынешного состояния, почти ничего не изменилось. Однако в историческом, долговременном плане перемены оказываются радикальны --- у общества изменилось будущее, изменилась "цель развития". Наверное, анализ, с этой точки зрения, отдельных периодов в истории различных цивилизаций был бы любопытен.

bf Нейросистемы, поиск закономерностей, новая техника "работы с незнанием". Одна из наиболее трудных задач как для историков, так и для специалистов по математическому моделированию --- поиск причинно-следственных связей. Причем проблема многократно усложняется, если мы имеем дело с редкими, но исключительно важными событиями. Тут мы, с одной стороны, не знаем законов, определяющих ход исследуемых процессов, с другой стороны, не удается опереться на статистические методы анализа.

<< Пред. стр.

стр. 3
(общее количество: 5)

ОГЛАВЛЕНИЕ

След. стр. >>