<< Пред. стр.

стр. 7
(общее количество: 11)

ОГЛАВЛЕНИЕ

След. стр. >>

4. Конденсаторные пластины, г. Дарсонвализация.
17. Назовите методы электролечения, при которых электроды накладывают с обязательным воздушным зазором. а. УВЧ-терапия. б. Гальванизация, в. Магнитотерапия. г. Дарсонвализация.
18. Назовите аппараты для УВЧ-терапии, для которых характерны перечисленные величины воздушного зазора (найдите соответствующие сочетания).
1. 6 см. 2. 8 см. а. УВЧ-66 3. 10см. 4. 12 см. б. УВЧ-300.
19. Назовите излучатели, которые используют для контактных воздействий при микроволновой терапии.
а. Прямоугольный размером 16Х35 см. б. Цилиндрический диаметром 40 мм. в. Цилиндрический диаметром 100 мм. г. Прямоугольный размером 5Х 30 см.
20. Укажите аппарат, который применяется для получения переменного магнитного поля (ПеМП).
а. "Волна-2", б. "Полюс-1", в. "Ромашка", г. "Искра", д. ИКВ-2. е. ДКВ-4.
21. Укажите, какие виды тока используют в аппарате "Полюс-1'>. а. Импульсный прямоугольной формы, б. Полусинусоидальной формы. в. Однополупериодный. г. Синусоидальный модулированный. д. Синусоидальный.
Ситуационные задачи
1. Больному 36 лет. Диагноз - гипертоническая болезнь I стадии, преимущественно церебральной формы. Назначен электрофорез раствора
108

сульфата магния методом гальванического воротника по Щербаку. Как располагаются электроды и какая сила гальванического тока должна быть применена?
2. Больной 30 лет. Диагноз - неврастения, гиперстеническая форма. Назначен общий электрофорез брома (по Вермелю). Как располагаются электроды и с какого полюса вводится бром?
3. Больной 55 лет. Диагноз - деформирующий артрит правого коленного сустава. Назначен электрофорез йода на правый коленный сустав с поперечным расположением электродов. Рассчитайте силу тока, если площадь гидрофильных прокладок равна 200 см2.
4. Больной 30 лет. Диагноз - хроническая левосторонняя пневмония. Рекомендован электрофорез на грудную клетку раствора хлорида кальция, методика поперечная. Какую силу тока следует назначить. если площадь гидрофильной прокладки составляет 300 см2?
5. Больной 40 лет. Диагноз - хронический колит с атоническим компонентом. Назначена электростимуляция мышц кишечника. Как следует расположить электроды?
6. Больной 35 лет. Диагноз - функциональное расстройство нервной системы. Назначен электросон. Как нужно расположить электроды?
7. Больной 30 лет. Диагноз - невралгия межреберных нервов. Назначена Диадинамотерапия. Какие разновидности диадинамических токов должны быть применены в этом случае и в какой последовательности?
8. Больной 45 лет. Диагноз - остеохондроз шейного отдела позвоночника. Назначена Диадинамотерапия на шейный отдел позвоночника паравертебралыю: двухконтактный волновый ток с изменением полярности по 3 мин. Какой должна быть последовательность действий при изменении полярности?
9. Больной 47 лет. Диагноз - остеохондроз пояснично-крестцового отдела позвоночника. Назначена амплипульстерапия. Какие разновидности и параметры синусоидальных модулированных токов могут быть применены для лечения больного?
10. Больной 18 лет. Диагноз-невралгия межреберных нервов слева. Назначена дарсонвализация по ходу нервов. Какие электроды и в течение какого времени применяются при этой процедуре?
11. Больной 35 лет. Диагноз-геморрой. Назначена дарсонвализация ректальным электродом. Как фиксировать электрод и какую мощность тока нужно применить?
12. Больной 20 лет. Диагноз - острый левосторонний отит. Назначена УВЧ-терапия. Как следует расположить электроды при проведении процедуры в этом случае?
13. Больной 30 лет. Диагноз - фурункул шеи в стадии инфильтрации. Назначена микроволновая терапия при помощи аппарата "Луч-3". Какова последовательность действий при проведении процедуры?
109

Глава 3 ЛЕЧЕНИЕ УЛЬТРАЗВУКОМ
Ультразвук представляет собой упругие механически колебания плотной физической среды с частотой более 20 кГц, т. е. в сверхзвуковом акустическом диапазоне частот, которые распространяются в виде продольных волн и приводят к последовательному сжатию и растяжению среды (рис. 43). В терапевтической практике используют ультразвук в диапазоне частот 800-3000 кГц.
Для глубины проникновения ультразвука в ткани организма имеет значение частота ультразвуковых колебаний и зависящая от нее длина волны. Чем больше частота колебаний, тем меньше глубина проникновения. При частоте 1600-2600 кГц ультразвук проникает на глубину 1 см, а при частоте 800-900 кГц - на 4-5 см. Кроме того, играет роль скорость распространения ультразвука в тканях, которая зависит от плотности среды и величины акустического сопротивления. Так, в жидких средах скорость распространения ультразвуковых волн составляет 1500 м/с, в твердых -4000 м/с. Поэтому в неоднородных средах, какими являются ткани организма, распространение ультразвука происходит неравномерно. Максимум поглощения ультразвуковой энергии наблюдается в костной ткани, на границах разных тканей, а также на внутренних мембранах клеток.
Ультразвуковые волны плохо отражаются воздухом, поэтому в лечебной практике воздействие ультразвуком проводят через контактную безвоздушную среду - вазелиновое масло, глицерин, воду и т. д.
Режим воздействия ультразвуковой энергией может быть непрерывным и импульсным. В непрерывном режиме ультразвук в виде единого потока направляют в ткани. В импульсном режиме посыл энергии чередуется с паузами. Время подачи ультразвуковой энергии и паузы могут быть различными. При длительности импульса 2 мс пауза продолжается 18 мс, а при импульсе в 4 мс - 16 мс. Чем меньше продолжительность импульса, тем менее эффективно действие ультразвука.
110



Рис. 43. Ультразвуковая волна (сгущение и разрежение частиц вещества).
Для получения ультразвуковых колебаний в физиотерапевтических аппаратах используют обратный пьезоэлектрический эффект, т. е. физическое явление, которое может развиваться в некоторых кристаллах (кварц, ти-танат бария и др.). При воздействии на такие кристаллы (пьезоэлементы) переменным током высокой частоты происходит их последовательное сжатие и расширение, что лежит в основе развития колебаний, соответствующих частоте подаваемого тока (рис. 44).
Ультразвук оказывает на организм механическое, физико-химическое и слабое тепловое действие.
Механическое действие ультразвука, обусловленное переменным акустическим давлением, вызывает микровибрацию, своеобразный "микромассаж" тканей, что приводит к изменению функционального состояния клеток: повышается проницаемость клеточных мембран, усиливаются процессы диффузии и осмоса, изменяются кислотно-щелочное равновесие, пространственное взаимоотношение субмикроскопических структур в клетке. Термическое действие ультразвука связано, с одной стороны, с переходом механической энергии в тепловую, а с другой - интенсификацией биохимических процессов. Эндогенное тепло, образующееся в тканях, распространяется неравномерно, оно больше проявляется в плотных тканях и пограничных слоях. Повышение температуры в тканях способствует расширению кровеносных и лимфатических сосудов, изменению микроциркуляции. В результате этого активи-
111


Рис. 44. Пьезоэлектрический эффект (схема).
руются тканевые обменные процессы, проявляется противовоспалительное и рассасывающее действие ультразвука.
Физико-химическое действие ультразвука связано с пространственной перестройкой внутриклеточных молекулярных комплексов. Повышается активность ряда ферментов, интенсивность тканевых окислительно-восстановительных процессов, увеличивается митотическая активность клеток, в тканях происходит образование биологически активных веществ - гепарина, гистамина, серото-нина и др.
Механизм терапевтического действия ультразвука многообразен. Он складывается из местных и общих реакций, реализуемых нейрорефлекторным и гуморальным путями. Эти реакции развиваются пофазно и отличаются длительным последействием.
При правильной дозировке ультразвук оказывает болеутоляющее, рассасывающее, противовоспалительное, спазмолитическое, фибринолитическое действие. Под его воздействием ускоряются регенеративные и репаративные процессы, повышается возбудимость нервно-мышечного аппарата, усиливается проводимость импульсов по периферическому нервному волокну, активируется передача нервных импульсов в симпатических ганглиях, улучшается трофическая функция тканей.
Диапазон влияния ультразвука на организм человека весьма широк, что определяет возможности его использования в лечении различных заболеваний.
Одним из современных методов лечебного использования ультразвука является ультрафонофорез (фонофорез) лекарственных веществ. Он является физико-фармакологическим методом сочетанного воздействия на организм ультразвука и лекарственных веществ. Для проведения фонофореза вместо обычных
112

контактных сред (вазелин, ланолин, глицерин) используют лекарственные смеси, представляющие собой водные растворы, мази, эмульсии, содержащие различные лекарственные средства.
Наибольшее распространение в практике получили. фонофорез гидрокортизона, анальгина, эуфиллина и др. Повышение проницаемости кожи, сосудов, клеточных мембран, механическое разрыхление соединительной ткани под действием ультразвука имеет важное значение для проникновения лекарственных веществ.
Ультразвук усиливает чрескожный транспорт лекарственных препаратов, которые депонируются в коже, откуда медленно поступают в кровь, а затем к органам и тканям.
Показаниями для ультразвуковой терапии являются заболевания опорно-двигательного аппарата (артриты, артрозы, ревматоидный артрит), травмы и заболевания периферической нервной системы, а также заболевания органов пищеварения (язвенная болезнь желудка и двенадцатиперстной кишки), глаз (конъюнктивит, кератиты), ЛОР-органов (тонзиллиты, фарингиты), урологические (простатиты), гинекологические (сальпингоофориты), стоматологические (пародонтоз) и некоторые болезни кожи.
К числу частных противопоказаний для ультразвуковой терапии относятся ишемическая болезнь сердца с явлениями стенокардии и аритмии, гипертоническая болезнь II-III стадии, тромбофлебит, не рекомендуют назначение этой процедуры детям до 3-5 лет, а также воздействие ультразвуком на чувствительные ростковые зоны костей у детей.
Эффективность применения ультразвука зависит от его интенсивности, области воздействия и продолжительности процедуры. Интенсивность ультразвуковых колебаний - количество ультразвуковой энергии (в ваттах), проходящее через 1 см площади излучателя аппарата в течение 1 с (Вт/см2). Применяемую в физиотерапевтической практике интенсивность ультразвуковых колебаний условно подразделяют на малую (0,05-0,4 Вт/см2), среднюю (0,6-0,8 Вт/см2) и высокую (1,0-1,2 Вт/см2).
Ультразвуковые волны малой интенсивности обычно используют для воздействия на область головы и симпатические ганглии, большой интенсивности - на конечности. Не рекомендуется воздействовать на выступающие костные поверхности и области, имеющие очень тонкий слой мягких тканей. Ультразвуковому воздействию подвергают отдельные участки (поля), при этом площадь
^l^ 113

одного поля не должна превышать 150-250 см2. Продолжительность воздействия на одно поле составляет в среднем 5-10 мин, на несколько полей - не более 5 мин. Длительность всей процедуры не должна превышать 15 мин. Процедуры назначают ежедневно или через день. Курс лечения 8-10 процедур.
Аппаратура
В настоящее время в физиотерапевтической практике применяют несколько видов ультразвуковых аппаратои:
ультразвуковые терапевтические стационарные (УТС-1, УТС-1М) и портативные (УЗТ-101, УЗТ-102, УЗТ-103, УЗТ-104, фУЗТ-31, ЛОР-1А, ЛОР-2, ЛОР-3) и новой серии УЗТ-3.06, УЗТ-3.02Д, УЗТ-З.ОЗЛ, которые работают на частоте 2600 кГц, У ЗТ-13-01-Л (Гамма Л), УЗТН-22/ 44 OIV ("Барвинок").
Ультразвуковые аппараты серии УЗТ имеют разнообразные по форме и площади излучатели (ИУТ-излуча-тель ультразвуковой терапевтический), применяемые в зависимости от предназначения. Из моделей этой серии аппарат УЗТ-101 применяют для лечения заболеваний внутренних органов, костно-мышечной и нервной системы, УЗТ-102 - стоматологических заболеваний, УЗТ-103 - урологических заболеваний, УЗТ-104 - глазных заболеваний, УЗТ-31 - в гинекологии.
Аппараты ЛОР-1А, ЛОР-2, ЛОР-3 предназначены для использования в отоларингологической практике. Они снабжены специальным набором излучателей. Различные виды излучателей показаны на рис. 45.
Все аппараты для ультразвуковой терапии имеют высокочастотный регенератор электрического тока с блоком питания и ультразвуковой излучатель, в котором заложена пластинка пьезоэлемента. Ультразвуковой излучатель соединен с генератором специальным высоковольтным кабелем. Площадь и форма ультразвукового излучателя могут быть разными. Одной из современных моделей является портативный аппарат УЗТ-101 (рис. 46), работающий от сети переменного тока с напряжением 220 В, не требующий заземления. Он генерирует ультразвуковые колебания с частотой 880 кГц в непрерывном и импульсном режимах (длительность импульсов 2,4 и 10 мс). В комплекте к аппарату прилагаются 2 излучателя площадью 1 и 4 см2 и футляр с гнездами для излучателей, шпателя и стаканов для медикаментов.
1)4






Рис. 45. Излучатели ультразвуковых терапевтических аппаратов.

Рис. 46. Панель управления аппарата УЗТ-101. а - гнездо для подключения кабеля излучателя; б - индикаторная лампочка высокого напряжения; в - индикаторная лампочка напряжения сети; г - клавиша включения в сеть; д - клавишные переключатели излучателей; е - клавишные переключатели интенсивности ультразвуковых колебаний (всего пять клавиш, соответствующих интенсивности 0,05; 0,2; 0,4; 0,7; 1,0 Вт/см2); ж - переключатель режима работы (непрерывный, импульсный); з - процедурные часы (в минутах).
Методика
Ознакомившись с назначением врача-физиотерапевта, медицинская сестра начинает подготовку больного к процедуре. Последовательность ее действий показана на схеме 8. По ее указанию больной принимает позу в зависимости от зоны воздействия, причем так, чтобы ему было удобно. Следует предупредить больного, что во время

5*
115


СХЕМА 8. ОРИЕНТИРОВОЧНАЯ ОСНОВА ДЕЙСТВИЙ МЕДИЦИНСКОЙ СЕСТРЫ ПРИ ПРОВЕДЕНИИ УЛЬТРАЗВУКОВОЙ ТЕРАПИИ (УЛЬТРАФОНОФОРЕЗА)

процедуры он будет ощущать приятное тепло. Появление сильного жжения или боли может свидетельствовать о нарушении правил проведения процедуры, чрезмерной интенсивности или плохой переносимости ультразвука. Медицинская сестра должна сообщить об этом врачу-физиотерапевту для коррекции назначения.
Ультразвуковую терапию чаще осуществляют контактным способом, т. е. воздействие проводят непосредственно на кожу, предварительно смазанную вазелиновым маслом, ланолином или глицерином (рис. 47). При большой неровности поверхности, для лучшего обеспечения контакта с излучателем можно использовать воду, налитую в
116

фаянсовые или фарфоровые ванночки. Температура воды должна быть в пределах 32-36 °С, предварительно ее необходимо дегазировать кипячением. В воду погружают участки тела больного, подлежащие воздействию, и ультразвуковой излучатель, который должен находиться на расстоянии 1-2см от поверхности кожи (рис. 48).
В офтальмологии для помещения контактных сред (масла, воды) применяют специальные глазные ванночки.
Перед включением аппарата в сеть один из ультразвуковых излучателей подсоединяют к кабелю и включают его в гнездо на панели аппарата. Затем вилку вставляют в сетевую розетку, нажимают клавишу включения в сеть, при этом должна загореться зеленая сигнальная лампочка. Далее нажатием соответствующих клавиш устанавливают указанный в назначении врача режим работы, номер излучателя и указанную интенсивность ультразвука. Затем поворотом ручки процедурных часов вправо до упора устанавливают назначенное время процедуры, при этом загорается индикаторная лампочка высокого напряжения.
После включения аппарата медицинская сестра должна проверить его работу, так как пьезоэлемент, помещенный в основании ультразвукового излучателя, со временем изнашивается и выходная мощность ультразвуковой энергии изменяется. Проверку следует проводить 1 раз в день Существуют два способа проверки излучателя (рис. 49). При первом способе проверки излучатель помещают в стакан с водой. Если аппарат работает в непрерывном режиме с интенсивностью 0,4-0,6 Вт/см2, то в воде должны появиться пузырьки воздуха, оседающие на поверхности излучателя. При втором способе проверки на рабочую поверхность излучателя наносят несколько капель воды или вазелинового масла. Если аппарат исправен, то после его включения наблюдается подпрыгивание, "кипение" этих капель. Для проверки выходной мощности ультразвуковой энергии применяют также специальный прибор ИМУ-3 (измеритель мощности ультразвукового излучения). Проверку при помощи этого прибора осуществляет техник 1 раз в месяц.
Процедуру в соответствии с назначением можно проводить по лабильной или стабильной методике. При лабильной методике ультразвуковой излучатель перемещают по поверхности тела больного медленными круговыми и спиралеобразными движениями со скоростью 1- 1,5 см/с.
117


Рис. 47. Контактное воздействие ультразвуком. а, б, - области воздействия.

Рис. 48. Воздействие ультразвуком через воду. а, б - области воздействия.
Иногда используют стабильную методику, при которой излучатель устанавливают неподвижно. В этом случае он фиксируется либо рукой медицинской сестры, либо специальными держателями, имеющимися в комплектах некоторых аппаратов.
118


Рис. 49. Проверка наличия ультразвуковых колебаний в излучателе. а - первый способ; б - второй способ.
По окончании процедуры раздается звуковой сигнал и гаснет индикаторная лампочка. Аппарат выключают сначала последовательным нажатием клавиш-переключателей, а затем и выключателя сети. С кожи больного и поверхности излучателя удаляют ватным тампоном или бумажной салфеткой контактную среду и обрабатывают 96 % раствором спирта.
Методика фонофореза почти не отличается от обычной ультразвуковой процедуры. Различие состоит лишь в том, что при фонофорезе в качестве контактных сред используют лекарственные эмульсии, мази или водные растворы лекарственных веществ. В качестве основы для приготовления лекарственных веществ применяют вазелин или вазелиновое масло, например анальгин - 50 % водный раствор - 5 мл, вазелин, ланолин по 25 г.
Различают две основные методики проведения фонофореза. При первом способе контактная среда с лекарственным веществом наносится на поверхность, подвергаемую воздействию, а затем ультразвуковой излучатель устанавливают на кожу больного и включается аппарат.
Второй способ применим для воздействия на неровные и раневые поверхности. Для этого используют специальные ванночки, которые заполняют лекарственным веществом. Разновидностью этого способа можно считать фонофорез через различные воронки, насадки, которые
119

используют в стоматологической и глазной практике. В гинекологической и проктологической практике для фо-нофореза лекарственных веществ применяют влагалищные и ректальные заливки препаратов и специальные полостные излучатели, которые входят в комплект к аппаратам УЗТ-103, УЗТ-31.
Примеры назначений. 1. Ультразвук на пяточные области, методика лабильная, режим непрерывный, интенсивность 0,6- 0,8-1,0 Вт/см2, 5-7 мин на каждую зону, ежедневно. Курс лечения 12 процедур.
2. Фонофорез гидрокортизона на область правого коленного сустава, методика лабильная, режим непрерывный, интенсивность 0,4- 0,6 Вт/см2, 5 мин, ежедневно. Курс лечения 10 процедур.
Некоторые частные методики
Воздействие ультразвуком при заболеваниях суставов и позвоночника. Процедуры назначают на область пораженных суставов и паравертебральные зоны позвоночника (для верхних конечностей - на уровне сегментов Су-Thx, для нижних конечностей-Thx-L[). Воздействие осуществляется в положении больного сидя (рис. 50). Ультразвуковой излучатель перемещают круговыми движениями в области сустава, пяточной кости, подошвенной поверхности, поверхности стопы и т. д. Методика лабильная, в качестве контактной среды используют вазелиновое масло, анальгиновую или гидрокортизоновую мази. Режим непрерывный. Интенсивность ультразвука при воздействии на область плечевого сустава - 0,2-0,4, на области локтевого сустава и кисти - 0,2-0,6, на область коленного сустава - 0,4-0,6, на область тазобедренного сустава - 0,4-0,6, на область пяточных костей стопы - 0,6-0,8 Вт/см2. Продолжительность процедуры - 3-5 мин на каждую зону, ежедневно или через день. Курс лечения 8-10-15 процедур. На область мелких суставов ультразвуковое воздействие проводится
через воду.
Воздействие ультразвуком на область позвоночника. Показания: травматические поражения, дегенеративно-дистрофические и воспалительные заболевания позвоночных суставов (артрозы, артриты) и позвоночника (межпозвонковый остеохондроз с корешковым синдромом), в подост-рой и хронической стадиях заболевания. При проведении процедуры больной лежит на кушетке или сидит на стуле лицом к спинке (рис. 51), Воздействие ультра-
120





Рис. 50. Воздействие ультразвуком на плечевой сустав.


Рис. 51. Воздействие ультразвуком на паравертебральные зоны вдоль позвоночника.

звуком на паравертебральные зоны осуществляют на 2-3 см влево и вправо от остистых отростков позвоночника. Интенсивность 0,2-0,4 Вт/см2 в импульсном режиме (длительность импульсов 2 мс, 4 мс). Методика лабильная, время процедуры 3-5 мин на каждую сторону.
Воздействие ультразвуком при язвенной болезни желудка и двенадцатиперстной кишки. Перед процедурой больной должен выпить 1-2 стакана жидкости (кипяченой воды, чая) для оттеснения газового пузыря в верхние отделы желудка. Воздействие ультразвуком осуществляется на эпигастральную область и паравертебрально с двух сторон на уровне Thyn-Thxn в положении больного сидя (рис. 52), в непрерывном или импульсном режиме по лабильной методике. Интенсивность ультразвука - 0,4-0,6 Вт/см2, время процедуры - по 3-5 мин на каждую зону. Вначале 4-5 процедур проводят через День, затем ежедневно. Курс лечения 10-12-15 процедур.
Воздействие ультразвуком при вазомоторном рините. Процедуры проводят в положении больного лежа. На область спинки и скатов носа наносят вазелиновое масло.
121


Рис. 52. Области воздействия ультразвуком при язвенной болезни желудка.
Круговыми и линейными движениями ультразвуковой излучатель перемещают по области воздействия. Режим непрерывный, интенсивность 0,2-0,4 Вт/см2, продолжительность процедуры 3-5 мин, ежедневно или через день. Курс лечения 10-12 процедур. При вазомоторных ринитах можно применять и фонофорез гидрокортизона.
Существует и эндоназальная методика ультразвуковой терапии для лечения вазомоторного ринита, которую можно проводить с помощью аппаратов ЛОР-1, ЛОР-2,
ЛОР-3.
Воздействие ультразвуком при гинекологических заболеваниях. При ряде заболеваний процедуры проводят на область наружных половых органов. Их делают после туалета наружных половых органов и промежности. По лабильной методике озвучивают половые губы и клитор, паховые зоны и кожу вокруг анального отверстия. Режим непрерывный. Интенсивность ультразвука 0,4-0,8 Вт/см . Время воздействия 10 мин. Курс лечения 10-12 процедур.
Применяют и внутривлагалищные воздействия ультразвуком. Процедуры делают на кушетке, больная при этом лежит на спине, согнув ноги в коленных и тазобедренных суставах, максимально разведя бедра. На поверхность излучателя наносится тонкий слой вазелинового масла, введение излучателя во влагалище зависит от ло-
122

кализации патологического процесса (задний, боковой, передний свод). Излучатель должен хорошо контактировать со слизистой оболочкой, а ручка излучателя надежно фиксируется. Интенсивность ультразвука 0,4- 0,8 Вт/см2, режим непрерывный или импульсный. Продолжительность воздействия 6-8 мин. Курс лечения 10-12 процедур.
МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ПРОВЕДЕНИЯ ПРАКТИЧЕСКОГО ЗАНЯТИЯ
Цель занятия: изучить физические основы ультразвуковой терапии, механизм биологического и терапевтического действия ультразвука, последовательность работы на ультразвуковых терапевтических аппаратах, методику и технику проведения процедур.
Учебное время - Зч.
План проведения занятия и распределение времени
Занятия проводятся в классе и базовом физиотерапевтическом отделении.
1. В классе преподаватель объясняет физические основы ультразвуковой терапии, механизм биологического и терапевтического действия ультразвука, вопросы дозирования, показания и противопоказания для назначения ультразвуковой терапии. Затем методом опроса и решения контрольных тестов преподаватель уточняет усвоение учащимися материала - 1 ч.
2. В базовом физиотерапевтическом отделении учащиеся изучают принципы устройства и работы аппарата серии УЗТ (УЗТ-101) и знакомятся с другими видами ультразвуковых аппаратов, имеющихся в отделении. Разбирают вопросы техники безопасности при работе с аппаратами. Изучают частные методики ультразвуковой терапии - 1ч.
3. Изучение методики и техники ультразвуковой процедуры. Учащиеся самостоятельно проводят процедуры друг другу, вместе с преподавателями или медицинской сестрой выполняют процедуры у больных - 1ч. Логическая структура темы представлена на схеме 9.
Тесты на усвоение знаний
1. Какой вид энергии является действующим в ультразвуке?
а. Ток высокой частоты, б. Импульсный ток. в. Механическая энергия. г. Магнитное поле.
2. Какой из перечисленных аппаратов применяют в урологической практике? а. УЗТ-101. б. УЗТ-102. в. УЗТ-103. г. УЗТ-104.
3. С помощью какого устройства осуществляется воздействие при проведении ультразвуковой терапии? а. Электрод, б. Рефлектор, в. Излучатель, г. Индуктор.
4- В каких единицах измеряется и дозируется ультразвуковая терапия? а. Вт. б. мА/см2. в. Вт/см2.
5- Какое расстояние должно быть между ультразвуковым излучате-
123



лем и поверхностью тела больного при воздействии через воду? а. 4-5 см. б. 2-3 см. в. 1-1,5 см. г. 1-2 см.
6. Какая длительность импульсов в импульсном режиме применяется в аппаратах серии УЗТ?
а. 4 мс, б мс, 10 мс. б. 2 мс, 4 мс, 10 мс. в. 4 мс, 8 мс, 10 мс, г. 2 мс, б мс, 8 мс.
7. С какой скоростью следует передвигать ультразвуковой излучатель по поверхности тела больного? а. 0,5-1 см/с. б. 2-3 см/с. в. 1-2 см/с. г. 1-1,5 см/с.
8. Какая интенсивность ультразвука наиболее адекватна для воздействия на область головы?
а. 0,4-0,6 Вт/см2, б. 0,6-0,8 Вт/см2, в. 0,2-0,4 Вт/см2, г. 0,05- 0,2 Вт/см2.
9. Какой температуры должна быть вода, используемая в качестве контактной среды при ультразвуковой терапии? а. 28-32 °С. б. 32-36 °С. в. 32-38 °С. г. 38-40 "С.
10. Какова максимальная продолжительность ультразвукового воздействия? а. 10 мин. б. 15 мин. в. 20 мин. г. 30 мин.
11. По правилам работы аппарата, что включается в последнюю очередь при проведении процедуры? а. Интенсивность, б. Режим работы, в. Показатель времени.
12. В каком положении больного проводится ультразвуковое воздействие на эпигастральную область при язвенной болезни желудка? а. Сидя. б. Лежа. В. Стоя.
13. Можно ли при проведении процедуры перемещать ультразвуковой излучатель с одного поля на другое без выключения регулятора интенсивности? а. Да; б. Нет.
14. Какие контактные среды применяют для фонофореза? а. Ланолин, б. Гидрокортизоновая мазь. в. Вазелин.
15. При каком режиме работы ультразвукового аппарата вводится больше лекарственного вещества? а. Непрерывный режим, б. Импульсный режим.
16. Можно ли для фонофореза лекарственных веществ использовать стабильную методику воздействия? а. Да. б. Нет.
Ситуационные задачи
1 Больной 40 лет. Диагноз - язвенная болезнь желудка и двенадцатиперстной кишки. Назначена ультразвуковая терапия. Что перед
процедурой должен сделать больной?
2 Больная 45 лет. Диагноз - ревматоидный артрит в стадии затухающего обострения. Назначена ультразвуковая терапия на правый и л^вый коленный суставы. Что должна сделать медицинская сестра перемещая излучатель с одного поля воздействия на другое?
3 Ботьной 35 лет. Диагноз-обострение хронического радикулита ' шейного отдела позвоночника. Назначен фонофорез анальгина. Какое вещество применяется в качестве контактной среды для ультразвуковой терапии?

Глава 4 СВЕТОЛЕЧЕНИЕ
Светолечение - метод физиотерапии, заключающийся в дозированном воздействии на организм больного инфракрасного (ИК) или ультрафиолетового (УФ) излучения.
Свет представляет собой поток электромагнитных колебаний оптического диапазона, т. е. имеющих длину волны от 400 мкм до 2 нм (нанометр - lO"9 м, т. е. 1 миллиардная часть метра). Такие колебания излучаются отдельными порциями - квантами или фотонами, обладающими различной энергией.
Все жизненные процессы на Земле происходят в световой среде. Солнце - источник света - является и источником жизни на нашей планете. Влияние света на жизненные процессы было замечено уже в глубокой древности. Так возникла гелиотерапия - лечение естественным солнечным светом.
Развитие техники привело к созданию искусственных источников света. В 1876г. русский ученый П. Н. Яблочков изобрел дуговую электрическую лампу, которая в дальнейшем нашла применение в светолечении. Энергия света стала одним из преформированных физических лечебных факторов.
В основе биологического действия света лежит поглощение физической энергии его квантов тканями и преобразование ее в другие виды энергии, прежде всего тепловую и химическую, которые в свою очередь оказывают местное и общее воздействие на организм. Известно, что энергия кванта обратно пропорциональна длине волны, т. е. чем волна короче, тем выше энергетический потенциал. Световой поток только кажется однородным. Луч света, пропущенный через призму спектроскопа, распадается на ряд спектральных полосок красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового цвета. Широко известен феномен разложения белого солнечного света, который лежит в основе многоцветья радуги после дождя. Радуга возникает в результате преломления лучей солнца
126

в мельчайших капельках воды как в призме спектроскопа. Семь цветов радуги - это только видимая часть светового спектра, относительно узкая полоса частот его электромагнитных колебаний, находящаяся в пределах 760- 400 нм. По обе стороны от этой полосы расположены невидимые части спектра - инфракрасные лучи с большей длиной волны, чем у видимого света (400 мкм-760 нм), и ультрафиолетовые лучи - с более короткими волнами (180-400 нм). Последние тоже неоднородны. Мы различаем длинноволновые ультрафиолетовые (ДУФ) с длиной волны 400-315 нм, средневолновые (СУФ) с длиной волны 315-280 нм и коротковолновые (КУФ) лучи с длиной волны меньше 280 нм (рис. 53). Из правила о зависимости энергетического потенциала света от длины волны следует, что наибольшей энергией обладают КУФ-лучи. Однако значение имеют не только разница в количестве энергии различных частей спектра, но и специфические качественные различия. Они станут более понятными после рассмотрения способа генерации различных видов света.
Лучистую энергию испускает любое тело при температуре выше абсолютного нуля (-273 °С). При температуре 450-500 °С излучение состоит только из ИК-лучей. Дальнейшее повышение температуры обусловливает излучение видимого света - всем известно красное и белое каление. При температуре выше 1000 °С начинается УФ-излучение. Все источники света, зависящие от температуры излучающего тела, называются калорическими. Степень их нагрева определяет как интенсивность, так и характер излучения. Солнце является естественным ка-лорическим источником света. Имея температуру, достигающую астрономической цифры - около 6000 °С, оно является источником всех видов светового излучения - от инфракрасного до коротковолнового ультрафиолетового. В искусственных калорических излучателях применяются нити накаливания, нагреваемые электрическим током. Они используются как источники инфракрасного и видимого света. Поэтому очевидно, что инфракрасный свет оказывает в основном тепловое воздействие.
Использование калорических источников для получения Уф-излучения было бы экономически невыгодным и создавало бы чрезмерную тепловую нагрузку. Для получения УФ-излучения в физиотерапии применяется другой источник - люминесцирующий, например ртутно-кварцевая лампа. Люминесцентные лампы излучают
127


УФ-лучи не вследствие нагрева, а в результате физико-химического процесса, происходящего в них. Люминесцентные источники используются как генераторы видимого света (лампы "дневного света") и УФ-излучения. Таким образом, современные искусственные источники света дают возможность получать отдельные заданные участки его спектра, что является преимуществом аппаратного светолечения перед гелиотерапией.
Биологическое действие светового излучения зависит от глубины его проникновения в ткани. Чем больше длина волны, тем сильнее действие излучения. ИК-лучи проникают в ткани на глубину до 2-3 см, видимый свет - до 1 см, УФ-лучи - на 0,5-1 мм.
Эффективность воздействия света зависит также от степени освещенности или интенсивности облучения. Она обратно пропорциональна квадрату расстояния от источника облучения, т. е. быстро снижается при удалении источника. Освещенность зависит также от степени рассеивания света, угла его падения на поверхность объекта облучения. При прочих равных условиях, которые при искусственном облучении всегда могут быть сохранены (стабильное расстояние), определяющей величиной интенсивности облучения становится экспозиция или время облучения. Поэтому дозировка светолечебных процедур при заданном расстоянии выражается в единицах времени (минуты, секунды). Определенное значение имеет среда, в которой распространяются световые лучи от источника до объекта облучения. Так, оконное стекло пропускает только 30 % ДУФ-излучения, атмосфера Земли задерживает УФ-лучи с длиной волны 295 нм и более, защищая биосферу планеты от наиболее агрессивной коротковолновой части спектра, которая поглощается озоном, содержащимся в атмосфере. Для изготовления искусственных
128

источников УФ-излучения - ртутно-кварцевых ламп применяется специальное кварцевое стекло, пропускающее эти лучи.
ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ
Инфракрасное излучение (тепловое излучение, инфракрасные лучи) - участок общего электромагнитного спектра. ИК-лучи проникают в ткани организма глубже, чем другие виды световой энергии, - до 2-3 см, что вызывает прогревание всей толщи кожи и отчасти подкожных тканей. Более глубокие структуры прямому прогреванию не подвергаются.
Прямое действие ИК-лучей ограничивается участком облучения, но оно опосредованно распространяется на весь организм. Облучение больших участков тела (световые ванны) обусловливает общее перегревание, сопровождающееся усиленным потоотделением. Поэтому местная гипертермия вызывает и общую реакцию организма.
Местное прогревание в зоне облучения прежде всего воздействует на терморецепторы кожи и практически сразу вызывает реакцию ее сосудов. Вначале наступает спазм, возникающий рефлекторно в ответ на раздражение терморецепторов. Он довольно быстро сменяется расширением сосудов кожи и усилением кровотока в них. Биологическая сущность этого явления заключается в терморегуляции тканей вследствие усиления периферического кровообращения, вызванного разницей температуры крови в нагретых и ненагретых тканях. Фаза активной гиперемии кожи характеризуется покраснением облучаемого участка, еще в ходе процедуры появляется эритема, постепенно исчезающая после прекращения облучения. Этим она отличается от стойкой ультрафиолетовой эритемы, возникающей после определенного скрытого периода. Кроме того, после эритемы при инфракрасном облучении обычно не остается пигментных пятен. Они могут образоваться только при многократных повторных прогреваниях, в частности применении грелок.
Активная гиперемия в зоне облучения кожи сопровождается повышением проницаемости стенок капилляров. Происходит усиленный выпот жидкой части крови в ткани и одновременное повышенное всасывание тканевой жидкости. В связи с этим повышается тканевый обмен, активизируются окислительно-восстановительные процессы.
129

Интенсивное нагревание кожи приводит к распаду ее белковых молекул и высвобождению биологически активных, в том числе гистаминоподобных, веществ, что способствует расширению сосудов и повышению проницаемости их стенок.
Все эти местные реакции способны обусловить генера-лизованное действие. Раздражение кожных рецепторов может вызвать рефлексы сегментарного типа. Циркуляция крови даже при небольшом повышении ее температуры влияет на центральные структуры вегетативной нервной системы, и циркуляция всасывающихся в зоне прогрева биологически активных веществ ведет к генерализованной сосудистой реакции, проявляющейся потоотделением, усилением и учащением сердечных сокращений.
Нарушение правил проведения процедур инфракрасного облучения может привести к опасному перегреву тканей и возникновению термических ожогов I и даже II степени, а также перегрузке кровообращения, опасной при сердечно-сосудистых заболеваниях.
Лечебный эффект инфракрасного облучения определяется механизмом его физиологического действия. Светолечебные процедуры с инфракрасным облучением применяются главным образом для местного действия даже на обширных областях тела. Усиление местной микроциркуляции оказывает выраженное противовоспалительное действие, ускоряет обратное развитие воспалительных процессов, повышает тканевую регенерацию, местную сопротивляемость и противоинфекционную защиту. Генерализо-ванное действие инфракрасного облучения проявляется антиспастическим действием, в частности на гладкомы-шечные органы брюшной полости, что нередко сопровождается и подавлением болевых ощущений, особенно при хронических воспалительных процессах.
Область терапевтического применения ИК-излучения довольно широка. Оно показано при негнойных хронических и подострых воспалительных местных процессах, в том числе внутренних органов, ожогах и отморожениях, плохо заживающих ранах и язвах, различных спайках и сращениях, миозитах, невралгиях, последствиях травм костно-мышечной системы.
Инфракрасное облучение противопоказано при злокачественных новообразованиях, тенденции к кровотечениям, острых гнойно-воспалительных заболеваниях.
130

Аппаратура
В большинстве физиотерапевтических аппаратов источником инфракрасного и видимого излучения служат лампы накаливания. Температура нити накаливания в них достигает 2800-3600 °С. Испускаемые ими в небольшом количестве УФ-лучи почти полностью поглощаются стеклом лампы. Ниже описаны некоторые аппараты, применяемые для инфракрасного облучения.
Лампа Минина (рис. 54) состоит из рефлектора параболической формы с деревянной рукояткой, в котором помещается излучатель мощностью 25 и 40 Вт. Нередко используется лампа синего цвета. Простота и портативность аппарата позволяют применять его в домашних условиях. Расстояние при облучении 15-30 см, оно регулируется по ощущению приятного тепла. Продолжительность процедур 15-20 мин, ежедневно. Курс лечения 10-15 процедур.
Лампа "Соллюкс" (рис. 55) представляет собой значительно более мощный источник излучения мощностью 200-500 Вт. Лампа заключена в параболический рефлектор со съемным тубусом, смонтированный на стационарном или переносном штативе. Облучатель устанавливают на расстоянии 40-80 см от поверхности тела больного. Продолжительность процедуры 15-30 мин, ежедневно или через день. Курс лечения 10-15 процедур.
Ванна светотепловая представляет собой каркас с фанерными стенками, на внутренней поверхности которого в несколько рядов расположены лампы накаливания мощностью по 25-40 Вт (рис. 56). В зависимости от назначения ванны может быть использовано 12 (ванна для туловища) или 8 (ванна для конечностей) ламп. Во время процедуры больной, частично или полностью обнаженный, находится в положении лежа на кушетке, каркас ванны устанавливают над соответствующей частью тела, накрывают простыней и шерстяным одеялом. Во время процедуры больной подвергается воздействию видимого и инфракрасного излучения и нагретого до 60-70 °С воздуха. Процедура продолжается 20-30 мин, проводится 1-2 раза в день. Курс лечения 12-15 процедур.
Для лечения открытым способом больных с обширными ожогами применяется более легкий каркас, не имеющий стенок, укрываемый простыней без одеяла. Больной без повязок находится под каркасом постоянно,
131





Рис. 54. Лампа Минина.


Рис. 55. Лампа "Соллюкс" стационарная.


Рис. 56. Ванна светотепловая.
лампы периодически включаются для согревания больного и подсушивания раневых поверхностей.
Методика
При проведении процедуры медицинская сестра должна точно следовать назначению врача, в котором следует
132

указать вид аппарата, область облучения, его продолжительность, число процедур на курс, интервалы между ними. Может быть оговорена интенсивность облучения по ощущениям больного. Область облучения отмечается графически на схеме назначения.
Примеры назначения. 1. Облучение лампой "Соллюкс" области эпигастрия. Интенсивность - до ощущения приятного тепла. Продолжительность 20-30 мин, ежедневно. Курс 15 процедур.
2. Ванна светотепловая на область почек. Интенсивность - до ощущения выраженного тепла (вызвать интенсивное потоотделение). Продолжительность от 30 мин до 1 ч, ежедневно. Курс 15 процедур.
Подготовка больного к процедуре состоит в осмотре области облучения, ее обнажении, занятии больным нужной позы, предупреждении его об интенсивности тепла, которое он должен ощущать во время процедуры. При распространении облучения на область лица глаза больного нужно защитить специальными очками. Во время процедуры необходимо следить, чтобы облучатель не находился непосредственно над облучаемой поверхностью, во избежание в случае повреждения аппарата попадания его раскаленных частей на тело больного. После окончания процедуры необходимо выключить аппарат, обтереть насухо облученный участок тела, осведомиться о состоянии больного и предложить ему отдохнуть 20-30 мин в комнате отдыха. Отдых должен быть более продолжителен, если больному предстоит выйти на улицу в холодную погоду. Этапы выполнения процедуры приведены на схеме 10.
Правила техники безопасности
1. Светотепловой облучатель должен быть заземлен.
2. Рефлектор и тубус облучателя следует протирать от пыли ежедневно перед началом работы сухой тряпкой, при этом вилка шнура должна быть отключена от сети, одновременно необходимо проверить крепление гаек и патрона в цоколе, надежность контактов, изоляцию проводов, следить, чтобы лампа была ввинчена в патрон до
отказа.
3. Рефлектор облучателя нужно устанавливать наклон-но, несколько сбоку от больного.
4. При облучении области лица и шеи необходимо защищать глаза матерчатой повязкой или защитными очками.
5. Медицинский персонал во время процедуры должен надевать светозащитные очки.
133



УЛЬТРАФИОЛЕТОВОЕ ИЗЛУЧЕНИЕ
Ультрафиолетовое излучение (ультрафиолетовые лучи) - участок общего электромагнитного спектра с наименьшей длиной волны, поэтому его кванты несут наиболее высокую энергию, которая в облучаемых тканях трансформируется в химическую и другие виды энергии. Именно химическая энергия и обусловленные ею химические процессы в тканях лежат в основе биологических преобразований, возникающих после облучения. По химической активности УФ-лучи значительно превосходят все остальные участки оптического спектра. Вместе с тем УФ-лучи имеют наименьшую длину проникновения в ткани - всего до 1 мм. Поэтому прямое влияние их ограничено поверхностными слоями облучаемых участков кожи и слизистых оболочек. Однако хорошо известно, что местное облучение вызывает и мощные общие реакции организма человека, его жизненно важных органов и систем. Такое воздействие является важным оздоровительным, профилактическим и лечебным фактором. Более того, при неправильном применении, нарушении дозировки и правил техники безопасности ультрафиолетовое облучение (УФО) может оказывать повреждающее действие, как местное, так и общее. Поэтому при проведении светолечебных, и прежде всего ультрафиолетовых, процедур необходимо строго и точно соблюдать назначения врача.
При дозировании и проведении УФО необходим индивидуальный подход к больному, так как световая чувствительность разных людей, различных участков кожи и даже восприятие одними и теми же людьми лечебных процедур в разное время года и отдельные периоды жизни значительно различаются, имеют индивидуальные колебания.
Наиболее чувствительна (рис. 57) к УФ-лучам кожа туловища, наименее - кожа конечностей. Так, фоточувствительность кожи тыла кистей и стоп в 4 раза ниже, чем кожи живота и поясничной области. Кожа ладоней и подошв наименее чувствительна.
Чувствительность к УФ-лучам повышена у детей, особенно в раннем возрасте, понижена у стариков, у страдающих инфекционными и ревматическими заболеваниями. Повышение фоточувствительности наблюдается у больных экземой, тиреотоксикозом. Весной восприимчивость к облучению максимальна, летом она снижается. Некоторые лекарственные средства при наружном или
135



Рис. 57. Регионарная чувствительность кожи к УФ-излучению (схема). Цифрами 1-5 обозначены степени понижения фоточувствительности кожи.
внутреннем применении оказывают фотосенсибилизирую-щее действие, т. е. усиливают чувствительность кожи и ее реакцию на облучение. К их числу относятся сульфани-ламидные препараты, некоторые антибиотики, анилиновые красители, антигистаминные и гормональные препараты и др.
Кванты УФ-излучения воздействуют на электронную оболочку атомов различных веществ, входящих в состав облучаемых тканей. Вследствие этого возникает фотоэлектрический эффект - атомы возбуждаются, а химическая активность веществ повышается, происходит распад некоторых белковых молекул - фотолиз. При этом молекулы высвобождают большое количество биологически актив-
136

ных веществ (гистамин, серотонин и др.), которые разносятся током крови по организму и вызывают сложные и разнообразные ответные реакции различных органов и систем.
Кванты УФ-излучения воздействуют и на дезоксирибо-нуклеиновую кислоту (ДНК) - носитель наследственных свойств клеток. В результате их изменений возникают клеточные мутации - некоторые клетки при этом погибают. Этот механизм лежит, в частности, в основе бактерицидного действия ультрафиолетового облучения.
К фотохимическому действию УФО относится и образование витамина D из неактивного предшественника, на чем основано применение такого облучения для профилактики и лечения рахита у детей, а также при переломах костей.
Воздействие УФ-лучей вызывает образование фотоэритемы. В отличие от эритемы, обусловленной влиянием ИК-лучей, фотоэритема возникает не сразу, а спустя некоторый латентный (скрытый) период, длительностью 2-48 ч. Она проявляется покраснением кожи на облучаемом участке, легким зудом, небольшой припухлостью, затем постепенно угасает и через 2-3 дня сменяется пигментными пятнами коричневого цвета вследствие накопления в клетках кожи пигмента меланина. Образование эритемы вызвано развитием асептического воспаления, своего рода легкого ожога кожи с реактивным расширением ее капилляров.
Облучение УФ-лучами с разной длиной волны обусловливает и разные свойства вызываемой ими эритемы. При коротковолновом излучении она имеет красноватый цвет с синюшным оттенком, образуется и исчезает раньше, при длинноволновом излучении эритема бывает насыщенно красного цвета, позднее появляется и дольше удерживается.
Прямое и опосредованное действие УФ-излучения можно проследить на всех жизненно важных системах организма. Под влиянием облучения в ЦНС наблюдается усиление тормозных процессов. Большие дозы УФ-лучей снижают, а малые, наоборот, усиливают тонус симпатической нервной системы. В крови отмечается увеличение количества эритроцитов и повышается степень их насыщенности кислородом. В последние годы разрабатывается и находит практическое применение новый способ применения УФ-лучей. Облучению подвергается кровь, взятая у больного с последующим обратным введением ее в крове-
137

носное русло (реинфузия). Этот метод начинает применяться при гипоксемических состояниях в лечении некоторых форм кислородного голодания, ишемической болезни сердца, заболеваний сосудов, септического состояния.
УФО повышает активность защитных, саногенетиче-ских механизмов, оказывает десенсибилизирующее действие, нормализует процессы свертывания крови, улучшает показатели липидного обмена. Под влиянием Уф-лучей улучшается функция внешнего дыхания, увеличивается активность коры надпочечников, усиливается снабжение миокарда кислородом, повышается его сократительная способность.
Применение УФ-лучей в лечебных целях при хорошо подобранной индивидуальной дозе и четком контроле дает высокий терапевтический эффект при многих заболеваниях. Он складывается из обезболивающего, противовоспалительного, десенсибилизирующего, иммуностимули-рующего, общеукрепляющего действия УФ-лучей. Их использование способствует эпителизации раневой поверхности, а также регенерации нервной и костной тканей. Они оказывают противорахитичное действие. УФО применяют не только в лечебных, но и в профилактических целях, которые будут рассмотрены в главе 8.
УФО применяется при лечении следующих заболеваний: 1) внутренних органов (бронхиты, трахеиты, пневмонии, бронхиальная астма, плевриты, ревматизм, атеросклероз, язвенная болезнь); 2) опорно-двигательного аппарата (артриты, спондилез, последствия переломов костей, миозиты); 3) нервной системы (невралгии, полиневриты, вегетативно-сосудистые дистонии, травмы спинного мозга и периферических нервов); 4) кожи (экземы, псориаз, долго не заживающие раны и язвы, после ожогов кожи, при рожистом воспалении).
УФО может оказывать повреждающее действие при превышении дозировки, а также повышенной и патологической чувствительности к УФ-лучам. Вредные последствия облучения чаще наблюдаются при избыточной гелиотерапии. Искусственное УФ-излучение легче дозировать и контролировать, поэтому осложнения в таких случаях наблюдаются относительно редко. Недостаточная защита глаз больных и персонала может привести к развитию острого конъюнктивита вследствие ожога УФ-лу-чами конъюнктивы и роговицы глаз. Это осложнение называется фотоофтальмией и проявляется болью в гла-
138

зах, светобоязнью, слезотечением, покраснением конъюнктивы. Симптомы удерживаются в течение суток и более, для их уменьшения применяют холодные примочки и глазные капли с кокаином или дикаином.
При грубых нарушениях техники безопасности возможны ожоги кожи. Они требуют лечения, как при термических поражениях.
Некоторые заболевания могут обостряться под влиянием УФО и потому являются противопоказаниями к его применению. К таким заболеваниям относятся злокачественные новообразования, тенденция к кровотечениям, диффузный токсический зоб, системная красная волчанка, кахексия, функциональная недостаточность почек.
Дозировка
Образование фотоэритемы - наиболее заметный результат действия УФ-лучей, точно соответствующий интенсивности облучения и степени регионарной и индивидуальной фоточувствительности кожи. Поэтому определение минимальной интенсивности облучения, способного вызвать образование эритемы, является основой установления дозы облучения - так называемой биодозиметрии. Она является основным методом дозирования УФО в клинической практике. При равных условиях (один и тот же источник УФ-лучей, одинаковое расстояние от него до объекта облучения) интенсивность облучения соответствует его времени. Поэтому дозу УФО, выраженную минимальной его продолжительностью при определенном расстоянии излучателя от тела облучаемого, которой достаточно для возникновения эритемы, называют биологической. Для ее определения применяют биодозиметр БД-2 (рис. 58), представляющий собой металлическую пластину с шестью прямоугольными отверстиями, площадью приблизительно 27Х7 мм каждое, которые закрываются подвижной заслонкой.
При определении биодозы медицинская сестра накладывает биодозиметр на область, предназначенную для облучения, или нижнюю часть живота, если назначено общее облучение. Не подлежащие облучению участки тела закрывают простыней. Больной должен надеть светоза-Щитные очки. Облучатель с включенной и прогретой ртут-но-кварцевой лампой устанавливают перпендикулярно к поверхности облучения на заданном расстоянии (обычно 50 см). Медицинская сестра открывает первое отверстие
139


Рис 58. Биодозиметр УФ-излучения.
биодозиметра и облучает кожу под ним в течение 30 с. Затем через каждые 30 с она открывает поочередно следующие отверстия, продолжая облучать участки под открытыми ранее отверстиями, пока не будут облучены все 6 отверстий. Через 24 ч после облучения при осмотре кожи видны эритемные полоски, соответствующие отверстиям биодозиметра. Подсчитав их число, нетрудно определить время, которое потребовалось для образования минимально выраженной полоски, т. е. собственно и определить биодозу. Так как биодозиметр имеет 6 отверстий, а время облучения кожи под каждым из них увеличивали на 30 с, то время экспозиции (облучения) кожи под 1-м отверстием (в последовательности их открывания) должно составлять 3 мин, под 2-м - 2 мин 30 с, под 3-м - 2 мин, под 4-м - 1 мин 30 с, под 5-м - 1 мин, под 6-м (последним) - 30 с. Так, например, если у больного появились 4 полоски, то очевидно, что минимально выраженная из них соответствует 4-му отверстию, т. е. они образовались при облучении в течение 1 мин 30 с, что и является, следовательно, биодозой. Для расчета биодозы предложена следующая формула:
х =<•(/;- т + 1),
где д- - величина биодозы, с; / - время облучения б-го (последнего) отверстия биодозиметра, с; п - число облученных отверстий; m - число эритемных полосок.
Пример расчета. Время облучения 6-го отверстия биодозиметра 30 с, облучалось б отверстий с увеличением времени облучения каждого на 30 с, получены 3 эритемные полоски. Подставляя эти величины в формулу, получим: ;< = 30 с • (6-3+1)= 30 с. 4= 120 с, или 2 мин.
140

Биодозу для других расстояний при использовании той же лампы можно установить расчетным путем. Известно, что освещенность поверхности обратно пропорциональна квадрату ее расстояния от источника света. Для расчета применяем формулу:

'--W.
где у - биодоза с определяемого расстояния, мин; А - биодоза с расстояния 50 см, мин; В - расстояние, с которого необходимо производить облучение, см.
Пример расчета. Биодоза с расстояния 50 см равна 2 мин, какова будет биодоза с расстояния 100 см? Подставив эти значения в формулу, получим:
у = 2 мин • (100 см/50 см)2 = 8 мин.
При выборе дозы для групповых облучений можно ориентироваться по средним биодозам при использовании определенной лампы, полученным у 10 человек. Такие данные приведены в паспорте каждой лампы.
Биодозиметрия отражает как индивидуальную, так и региональную (в различных участках тела) чувствительность к УФ-лучам, поэтому биодозу следует определять для каждого больного. В экстренных случаях, когда процедуру откладывать нежелательно (например, при рожистом воспалении), можно использовать среднюю биодозу, указанную в паспорте каждого облучателя. Алгоритм и ориентировочная основа действий медицинской сестры при определении биодозы УФО показаны на схеме 11.
Аппаратура
Источником УФ-излучения для лечебного применения являются газоразрядные лампы, изготовленные из кварцевого стекла, пропускающего УФ-лучи. По области излучаемого спектра облучатели разделяют на интегральные и селективные.
Интегральные облучатели испускают лучи полного УФ-спектра. Такими облучателями являются люминесцентные лампы высокого давления типа дуговых ртутно-кварцевых ламп (ДРТ) различной мощности, соответствующей цифровому индексу лампы (рис. 59).
Лампа представляет собой кварцевую трубку, в концы которой впаяны вольфрамовые электроды. Воздух из трубки выкачан, она заполнена парами ртути и небольшим количеством инертного газа аргона. При включении тока
141


в парах ртути возникает дуговой разряд. Наличие аргона облегчает зажигание лампы. Нормальный режим ее горения устанавливается через 10-15 мин после включения.


Рис. 60. Облучатель ультра- Рис. 61. Облучатель ртутно-фиолетовый на штативе кварцевый маячный (ОКБ-30)
(ОРК-21). | - выключатель; 2 - пусковая 1 - выключатель; 2 - пере- кнопка; 3 - защитный колпак. ключатель напряжения; Д - гнездо сетевого провода.
Спектр излучения ртутно-кварцевой лампы содержит большое количество УФ-лучей, а также видимый свет преимущественно синего и зеленого цвета и незначительное количество ИК-лучей.
Интегральные источники УФ-излучения - лампы типа ДРТ - используются в стационарных и портативных об-лучателях. На рис. 60 показан аппарат ОРК-21, являющийся стационарным облучателем, предназначенным для индивидуального местного и общего ультрафиолетового облучения. Облучатель имеет лампу ДРТ-375, заключенную в рефлектор, установленный на штативе.
143


Рис, 62. Облучатель для носоглотки: 1 - выключатель; 2 - пусковая кнопка; 3 - переключатель напряжения.
Портативный ультрафиолетовый облучатель применяется для местных облучений. Это аппарат настольного типа, состоящий из двух узлов, соединенных между собой штативом-ручкой. Его можно использовать в больничной палате и домашних условиях.
Для групповых общих облучений предназначены облу-чатели маячного типа: облучатель ртутно-кварцевый маячный большой (ОКБ-30) с лампой ДРТ-1000 (рис. 61) и малый (ОКМ-9) с лампой ДРТ-375. Последний применяют для облучения детей.
Существуют также аппараты для локального воздействия на слизистую оболочку, например облучатель ультрафиолетовый для носоглотки ОН-7 (рис. 62) с лампой ДРТ-220. Он представляет собой круглый алюминиевый корпус-рефлектор с четырьмя тубусами со съемными наконечниками для введения в полость рта, носа или наружный слуховой проход.
К селективным источникам УФ-излучения относятся дуговые бактерицидные и люминесцентные эритемные лампы. Они предназначены главным образом для дезинфекции помещений, но некоторые модели могут быть использованы и для общего УФО. Они представляют собой газоразрядные лампы из увиолевого стекла, испускающие УФ-лучи с длиной волны 285-380 нм.
144

Методика общего облучения
Общее УФО бывает групповым и индивидуальным. Групповое применяется в основном для профилактики, поэтому излагается в главе 8, индивидуальное - для лечения. При индивидуальном облучении последовательно воздействуют на переднюю и заднюю поверхности обнаженного тела постоянно возрастающими дозами (рис. 63). Начинают курс облучений с \ / .\ - '/з индивидуально определенной биодозы. Через каждые 2-3 процедуры дозу увеличивают вдвое и доводят к концу курса лечения до 2-3 биодоз. Существуют различные схемы общего облучения: основная, замедленная и ускоренная (табл. 4).
Процедуры общего облучения проводят через день. Во время курса лечения покраснения кожи, как правило, не наблюдается, так как интенсивность облучения наращивается постепенно. Замедленная схема применяется у ослабленных больных и детей в период выздоровления после острых инфекционных заболеваний, при вторичном малокровии. Ускоренная схема находит преимущественное применение при необходимости интенсифицировать облучение, например при фурункулезе у практически здоровых лиц.
Перед проведением общего УФО медицинская сестра должна прежде всего ознакомиться с назначением врача, определить биодозу, сообщить о ней врачу и получить от него схему общего облучения больного.
В рабочей схеме лечения типовое количество биодоз должно быть переведено в единицы времени (минуты, секунды) в соответствии с индивидуальной дозой больного.
Пример назначения. Общее облучение Уф-лучами в суб-эритемных дозах по ускоренной схеме. Начать с '/2 биодозы, через каждую последующую процедуру увеличивать дозу на '/з биодозы (до 4 биодоз), процедуры проводить через день. Курс 15 процедур.
Ртутно-кварцевая лампа облучателя должна быть включена заблаговременно, не менее чем за 15-20 мин До проведения очередной процедуры. Перед включением облучателя лампу протирают ватой, смоченной спиртом. Повторно зажигать лампу можно только после ее полного охлаждения. Перед включением лампы необходимо сначала поставить выключатель сети в положение "Выкл." (или "О"), перевести рукоятку рубильника в рабочее положение, затем - выключатель сети в положение "Вкл.". Если лампа сразу не загорается, то следует несколько раз
в-Поз 145


Рис. 63. Общее ультрафиолетовое облучение поверхностей
тела.
а - передней; б - боковой.
нажать и отпустить пусковую кнопку или повторно выключать и включать облучатель регулятором включения
в сеть.
По указанию медицинской сестры больной должен
раздеться и надеть светозащитные очки. Затем он ложится на спину, а медицинская сестра устанавливает облучатель на указанном в схеме расстоянии в такой точке, с которой достигается равномерное облучение всей передней поверхности тела. Для этого лампу следует установить примерно над верхней третью бедер. Далее производится поочередно облучение передней, задней и боковых поверхностей тела в течение времени, указанного в схеме.
146

Таблица 4. Схемы общих ультрафиолетовых облучений


Основна

я схема

Ускоренн

ая схема

Зак

иедленн

ая схема

Номер проце

количе

рассто

количе

расстоя-

ко

личе-

расстоя

дуры

ство

яние от

ство

нние от

с

тво

ние от



биодоз

<< Пред. стр.

стр. 7
(общее количество: 11)

ОГЛАВЛЕНИЕ

След. стр. >>